
Armbian documentation

Linux for ARM development boards

Armbian documentation team

2020 by Armbian

Table of contents

41. Welcome to the Armbian Documentation!

42. What is Armbian?

63. What is supported?

64. Get Involved!

75. User Guide

75.1 Prerequisites for new users

155.2 What is Armbian Linux?

155.3 Challenges

155.4 Benefits

175.5 Hardware troubleshooting guide

235.6 How to set wireless access point?

235.7 How to connect IR remote?

255.8 How to customize keyboard, time zone?

285.9 Armbian configuration utility

315.10 Device Tree overlays

365.11 Migration from Bananian to Armbian

396. Hardware Notes

396.1 Enable Hardware Features

396.2 Generic howto for Allwinner devices

416.3 H3 based Orange Pi, legacy kernel

456.4 Allwinner A10 & A20 boards

486.5 Allwinner H3 boards

516.6 Allwinner H5 and A64 boards

526.7 Allwinner H6

536.8 Cubox and Hummingboard boards

546.9 GPIO

556.10 Udoo Quad

556.11 Bugs

556.12 Udoo Neo

566.13 Helios4

577. Developer Guide

577.1 What do I need?

577.2 How to start?

617.3 Quick Start with Vagrant

637.4 Officially supported and tested method for building with Docker

Table of contents

- 2/88 - 2020 by Armbian

637.5 Creating and running Docker container manually

737.6 FEL/NFS boot explanation

768. Contributor Process

768.1 Collaborate on the project

768.2 Help with donations

778.3 Merge Policy

818.4 Armbian documentation hosted on Github pages

829. Release management

829.1 Release model

839.2 Release Branching, Versioning and Tags

839.3 Release Naming

839.4 Release Planning

849.5 Release Coordinating

859.6 Release Testing

869.7 Reflection on Prior Releases

869.8

8810. Community

Table of contents

- 3/88 - 2020 by Armbian

Linux for ARM development boards

1. Welcome to the Armbian Documentation!

If you are new to Armbian, the Getting Started section provides a tutorial for

everything you need to get Armbian running, and answers many Frequently Asked

Questions. It then continues on to more advanced topics.

If you need help, and have read through Getting Started, check out Troubleshooting.

If you still cannot find what you need here, visit the Armbian forum, where your input

can help improve this documentation.

2. What is Armbian?

Armbian is a base operating system platform for single board computers (SBCs) that

other projects can trust to build upon.

Lightweight Debian or Ubuntu based linux distribution specialized for ARM development boards

Each system is compiled, assembled and optimized by Armbian Build Tools

It has powerful build and software development tools to make custom builds

A vibrant community

What is the difference between Armbian and Debian Linux

•

•

•

•

•

1.Welcome to the Armbian Documentation!

- 4/88 - 2020 by Armbian

http://www.armbian.com
http://www.armbian.com
User-Guide_Getting-Started/
User-Guide_Getting-Started/
http://forum.armbian.com/
http://forum.armbian.com/
https://github.com/armbian/build
https://github.com/armbian/build
Developer-Guide_Build-Preparation/
Developer-Guide_Build-Preparation/
https://forum.armbian.com/topic/7787-what-is-the-difference-between-armbian-and-debian-linux/?tab=comments#comment-58689

2.0.1 Common features

Armbian Linux is availble as Debian and Ubuntu based images, compiled from scratch

Images are reduced to actual data size and automatically resized at first boot

Root password is 1234 . You are forced to change this password and (optional) create a normal user at first

login

Ethernet adapter with DHCP and SSH server ready on default port (22)

Wireless adapter with DHCP ready (if present) but disabled. You can use armbian-config to connect to your

router or create an AP

NAND, SATA, eMMC and USB install script is included (nand-sata-install)

Upgrades are done via standard apt upgrade method

Login script shows: board name with large text, distribution base, kernel version, system load, uptime, memory

usage, IP address, CPU and drive temperature, ambient temperature from Temper if exits, SD card usage,

battery conditions and number of updates to install

2.0.2 Performance tweaks

/var/log is mounted as compressed device (zram, lzo), log2ram service saves logs to disk daily and on

shutdown

Half of memory is allocated/extended for/with compressed swap

/tmp is mounted as tmpfs (optionally compressed)

Browser profile memory caching

Optimized IO scheduler (check /etc/init.d/armhwinfo)

Journal data writeback enabled. (/etc/fstab)

commit=600 to flush data to the disk every 10 minutes (/etc/fstab)

Optimized CPU frequency scaling with interactive governor (/etc/init.d/cpufrequtils)

480-1010Mhz @Allwinner A10/A20

480-1260Mhz @Allwinner H3

392-996Mhz @Freescale imx

600-2000Mhz @Exynos & S905

eth0 interrupts are using dedicated core (Allwinner based boards)

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

◦

◦

◦

◦

•

2.0.1Common features

- 5/88 - 2020 by Armbian

3. What is supported?

“Supported” is not a guarantee. “Supported” implies a particular SBC is at a high level

of software maturity, but has no intention to support all possible SBC functions.

Supported boards do receive preferential treatment to bugfix, improve, or add

additional functionality based on any of the following, non-exclusive criteria:

The discretion of the “Armbian Development Team”

The availability of the “Armbian Development Team”

The availability of sample boards and ease of testing

The mainline kernel maturity for the particular SoC or SBC platform

Paid engagements, long-term sponsorship to the Armbian Project or volunteer developers

Vendor or 3rd party has a designated resource providing support for a SBC or platform ON BEHALF OF THE

COMMUNITY and is contributing to the project

3.0.1 Supported chips

Allwinner A10, A20, A31, H2+, H3, H5, H6, A64

Amlogic S805 and S905 (Odroid boards), S802/S812, S805, S905, S905X and S912 (fork by @balbes150)

Actionsemi S500

Freescale / NXP iMx6

Marvell Armada A380

Rockchip RK3288

Samsung Exynos 5422

3.0.2 Supported boards

Check download page for recently supported list.

4. Get Involved!

Contribute

Community

Contact

Our IRC channel is #armbian on freenode.

1.

2.

3.

4.

5.

6.

•

•

•

•

•

•

•

•

•

•

3.What is supported?

- 6/88 - 2020 by Armbian

http://www.armbian.com/download/
http://forum.armbian.com
http://www.armbian.com/contact/
https://webchat.freenode.net/?channels=armbian
https://freenode.net/

5. User Guide

5.1 Prerequisites for new users

Please, make sure you have:

a proper power supply according to the board manufacturer requirements (basic usage example: 5V/2A with

DC Jack barrel OR thick USB cable)

a reliable SD card (see below “How to prepare a SD card?”)

What to download?

The download for each image consists of three separate files: An xz-compressed

image file, a sha file for download verification and an asc file for image

authentication.

For each board we usually provide:

one CLI Debian and one CLI Ubuntu based server image,

one desktop Ubuntu Bionic or Debian Buster

Other unsupported builds may also be available(like Debian Stretch/Bullseye Ubuntu

Disco/Eoan).

Some boards have different options due to their hardware specialities - router or IoT

boards.

Legacy or current?

Only current kernel branch is considered fully supported and can bring up video

acceleration for example. NAND support is there but is still experimental.

The level of kernel support does depend on the board family. If in your specific case

something does not work well, you are always free to try an image with legacy kernel

included.

•

•

•

•

5.User Guide

- 7/88 - 2020 by Armbian

What are testing images?

made from stable branches

not very well tested

for end users

What are experimental/dev images?

made from unstable branches

unstested

for experienced users only

Do not use testing or dev images in a productive environment. We do appreciate your

constructive feedback to developers.

How to check download authenticity?

All our images are digitally signed and therefore it is possible to check their

authenticity. You need to issue these commands (Linux/macOS, you might need to

install dependencies first, eg. apt-get install gnupg on Debian/Ubuntu or brew install gnupg

on macOS. on windows install the current simple gnupg Gnupg:

download public key from the database gpg --keyserver ha.pool.sks-keyservers.net --recv-key DF00FAF1C577104B50BF1D0093D6889F9F0E78D5 # perform verification gpg --

It is safe to ignore the message WARNING: This key is not certified with a trusted signature! .

How to check download integrity?

Since it might happen that your download got somehow corrupted we integrate a

checksum/hash for the image. You can compare the image’s SHA-256 hash with the one

contained in the sha256sum.sha file.

On Windows, you can download and use the QuickHash GUI and follow the instructions

in the gui.

while on Linux/macOS, in the directory in which you have downloaded the files ,you

would do this

shasum -a 256 -c Armbian_*.img.sha Armbian_*.img.xz #good response Armbian_5.35_Clearfogpro_Debian_stretch_next_4.13.16.img: OK

•

•

•

•

•

•

5.1Prerequisites for new users

- 8/88 - 2020 by Armbian

https://forum.armbian.com/forum/4-development/
https://gnupg.org/download/
https://quickhash-gui.org/download/quickhash-v3-1-0-windows/

How to prepare a SD card?

Important note: Make sure you use a good, reliable and fast SD card. If you

encounter boot or stability troubles in over 95 percent of the time it is either

insufficient power supply or related to SD card (bad card, bad card reader, something

went wrong when burning the image, card too slow to boot – ‘Class 10’ highly

recommended!). Armbian can simply not run on unreliable hardware so checking your

SD card with either F3 or H2testw is mandatory if you run in problems. Since

counterfeit SD cards are still an issue checking with F3/H2testw directly after purchase

is highly recommended.

Write the xz compressed image with USBImager or Etcher on all platforms since unlike

other tools, either can validate burning results saving you from corrupted SD card

contents.

Also important: Most SD cards are only optimised for sequential reads/writes as it is

common with digital cameras. This is what the speed class is about. The SD Association

defined Application Performance Class as a standard for random IO performance.

Application

Performance Class
Pictograph

Miniumum

Random Read

Minimum

Random Write

Minimum Sustained

(Seq. Write)

Class 1 (A1) 1500 4k IOPS 500 4k IOPS 10MBytes/sec

Class 2 (A2) 4000 4k IOPS 2000 4k IOPS 10MBytes/sec

At the time of this writing A1 and A2 cards are only widely available from SanDisk.

Armbian recommends A1 rated SD-Cards only now (A2 rated cards need yet lacking

driver support and therefore show lower overall and especially random IO

performance). For example:

5.1Prerequisites for new users

- 9/88 - 2020 by Armbian

http://oss.digirati.com.br/f3/
http://www.heise.de/download/h2testw.html
http://www.happybison.com/reviews/how-to-check-and-spot-fake-micro-sd-card-8/
https://gitlab.com/bztsrc/usbimager
https://balena.io/etcher
https://www.sdcard.org/developers/overview/application/index.html
https://www.sdcard.org/developers/overview/application/index.html
https://github.com/ThomasKaiser/Knowledge/blob/master/articles/A1_and_A2_rated_SD_cards.md
https://github.com/ThomasKaiser/Knowledge/blob/master/articles/A1_and_A2_rated_SD_cards.md
https://github.com/ThomasKaiser/Knowledge/blob/master/articles/A1_and_A2_rated_SD_cards.md

In case you chose an SD card that was already in use before please consider resetting it

back to ‘factory default’ performance with SD Formatter before burning Armbian to it

(explanation in the forum). Detailed information regarding ‘factory default’ SD card

performance.

How to boot?

Insert SD card into a slot and power the board. (First) boot (with DHCP) takes up to

two minutes with a class 10 SD card and cheapest board.

How to login?

Login as root on console (HDMI / serial) or via SSH and use password 1234. You will

be prompted to change this password at first login. You will then be asked to create a

normal user account that is sudo enabled (beware of default QWERTY keyboard

settings at this stage). Please use this tool, to find your board IP address.

Desktop images start into desktop without asking for password. To change this add

some display manager:

apt-get install lightdm

… or edit the contents of file:

/etc/default/nodm

and change the autologin user.

How to update?

apt update apt upgrade

Update process can take hours in case of using cheap SD card and/or under

heavy load.

If the kernel was upgraded during this process you will be prompted to reboot at next

login.

5.1Prerequisites for new users

- 10/88 - 2020 by Armbian

https://www.sdcard.org/downloads/formatter_4/
https://forum.armbian.com/topic/3776-the-partition-is-not-resized-to-full-sd-card-size/&do=findComment&comment=27413
https://forum.armbian.com/topic/954-sd-card-performance/?page=3&tab=comments#comment-49811
https://forum.armbian.com/topic/954-sd-card-performance/?page=3&tab=comments#comment-49811
http://angryip.org/

How to update u-boot?

First you need to update packages described in a previous “How to update” step. Then

run armbian-config utility, go to system settings and proceed to:

“Install” “Install to/update boot loader” -> Install/Update the bootloader on SD/

eMMC

How to adjust hardware features?

Use the Armbian configuration utility armbian-config

How to install to eMMC, NAND, SATA & USB?

Required condition:

NAND:

kernel 3.4.x and NAND storage

pre-installed system on NAND (stock Android or other Linux)

•

•

5.1Prerequisites for new users

- 11/88 - 2020 by Armbian

../User-Guide_Armbian-Config/
../User-Guide_Armbian-Config/

eMMC/SATA/USB:

any kernel

onboard eMMC storage

attached SATA or USB storage

Start the install script:

nand-sata-install

and follow the guide. You can create up to three scenarios:

boot from SD, system on SATA / USB

boot from eMMC / NAND, system on eMMC/NAND

boot from eMMC / NAND, system on SATA / USB

and you can choose the following file system options:

ext2,3,4

btrfs

On Allwinner devices after switching to boot from NAND or eMMC clearing the boot

loader signature on the SD card is recommended:

dd if=/dev/zero of=/dev/mmcblkN bs=1024 seek=8 count=1 (replace /dev/mmcblkN with the correct

device node – in case you run this directly after nand-sata-install without a reboot in

between then it’s /dev/mmcblk0). When booting from eMMC to get SD cards auto-

detected on Allwinner legacy images please consider changing mmc0 ‘s sdc_detmode from

3 to 1 in the board’s fex file (see here for details).

How to connect to wireless?

Required condition: a board with onboard or supported 3rd party wireless adapter on

USB

If you know what is your wireless SSID:

nmtui-connect SSID

•

•

•

•

•

•

•

•

5.1Prerequisites for new users

- 12/88 - 2020 by Armbian

https://forum.armbian.com/topic/1702-orange-pi-plus-2e-where-is-16ghz-and-sd/?p=13163

If you do not know, you can browse and then connect

nmtui-connect

5.1Prerequisites for new users

- 13/88 - 2020 by Armbian

How to set fixed IP?

By default your main network adapter’s IP is assigned by your router DHCP server and

all network interfaces are managed by NetworkManager:

user@boardname:~$ nmcli con show NAME UUID TYPE DEVICE Wired connection 1 xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx 802-3-ethernet eth0

The conncetion can now be edited with the following:

nmcli con mod "Wired connection 1" ipv4.addresses "HOST_IP_ADDRESS" ipv4.gateway "IP_GATEWAY" ipv4.dns "DNS_SERVER(S)" ipv4.dns-search "DOMAIN_NAME" ipv4.method "ma

The same changes can also be done with NetworkManagers text user interface:

sudo nmtui

5.1Prerequisites for new users

- 14/88 - 2020 by Armbian

5.2 What is Armbian Linux?

Armbian Linux provides optimized Debian and Ubuntu Linux images for ARM-based

SBCs. There is an incredible ecosystem of small computing platforms that are powerful

alternatives to the Raspberry Pi. Armbian’s mission is to provide a uniform system

offering that is trustworthy to run on any of the dozens of OS-neglected ARM single

board computers.

5.3 Challenges

Armbian is the opposite of Raspbian

Raspbian has dozens of contributors to focus on a single SBC platform. Armbian has a

dozen contributors to focus on 100+ SBCs spread over 30 platforms.

Balancing Development and Support

Given the point above, resources are thin. Armbian developers have to focus on the

core mission of maintaining the Armbian Build Platform. We heavily rely on other

members of the community to support each other. Although Armbian does provide a lot

of user friendly features, the reality is that Armbian is for more advanced users. If you

are really struggling with your SBC, you may want to consider first getting more

comfortable with Raspbian Linux on the Raspberry Pi.

5.3.1 More SBCs continuously coming to market

SBC and TV Box manufacturers love to design and ship new products. Unfortunately

they do not like to spend time on software and instead rely on community projects such

as Armbian to fill in the gaps.

5.4 Benefits

Simple

BASH shell, standard Debian/Ubuntu utilities. Common and specific features can be

with minimalistic menu-driven utility. Login is possible via serial, HDMI/VGA or SSH.

5.2What is Armbian Linux?

- 15/88 - 2020 by Armbian

https://github.com/armbian/build
https://github.com/armbian/config

Light

No bloatware or spyware. Special utilities are completely optional. Suitable for

newcomers and professionals.

Optimized

A distributed image is compacted to real data size and starts at around of 1G. Size is

optimized for SD card usage. Bigger is better. Installing applications later severely

reduces the life of your SD card. They were not designed for this type of usage.

Fast

Boards are optimized on kernel and userspace level. DVFS optimization, memory log

caching, browser profile memory caching, swap usage tuning, garbage commit delay.

Our system runs almost read-only and is one of the the fastest Linux for many

development boards in just about every case.

Secure

Security level is on a stock Debian/Ubuntu level and can be hardened with the

configuration utility. It provides a good starting point for industrial or home usage. The

system is regularly inspected by professionals within the community. Each official

stable build is thoroughly tested. Images are a direct base for all 3rd party builders.

Supported

Providing long term updates, security fixes, documentation, user support.

Smart

Deep understanding how boards work, how operating system work and how hardware

should be designed to run better. Involved in board design. Experience in Linux since

early 90’. Specialized in ARM development boards since 2013.

Open

Open source build script and kernel development, maintenance and distribution for

more than 30 different ARM and ARM64 Linux kernels. Powerful build and software

development tools. Can run in fully parallel mode. Can run under Docker.

5.4Benefits

- 16/88 - 2020 by Armbian

https://www.armbian.com/kernel

5.5 Hardware troubleshooting guide

If you are experiencing at least one of these problems:

board does not boot

board freezes, crashes or reboots randomly or when connecting USB devices

plugged in USB devices are not detected (not listed in lsusb output)

error changing the root password at first boot (Authentication token manipulation error)

error installing or updating packages due to read-only file system

and you are using a stable Armbian image, then most likely you have one of two

common problems - powering issue or SD card issue.

Note that

“I know that my power supply is good”, “it worked yesterday”, “it works with a different device”, etc. are not

objective reasons to skip powering related diagnostics

“I know that my SD card is good”, “it worked yesterday”, “it works with a different device”, etc. are not

objective reasons to skip storage related diagnostics

undervoltage can cause symptoms related to SD card problems such as filesystem corruptions and data loss, so

powering has to be checked first

Powering notes

Most boards, even ones fitted with PMIC (power management integrated circuit) do not have any measures to

react to undervoltage that could prevent instability

It does not matter what voltage your power supply outputs, it matters what voltage will reach the onboard

voltage regulators

Peak power consumption of popular boards can vary from 0.9A at 5V (H3 based Orange Pi PC) to 1.7A at 5V

(RK3288 based Tinkerboard), both without any attached peripherials like USB devices

Due to the Ohm’s law voltage drop due to cable and connector resistance will be proportional to the electric

current, so most of the time problems will be experienced at current spikes caused by CPU load or peripherials

like spinning up HDDs

•

•

•

•

•

•

•

•

•

•

•

•

5.5Hardware troubleshooting guide

- 17/88 - 2020 by Armbian

Power supply

Cheap phone chargers may not provide the current listed on their label, especially for long time periods

Some cheap phone chargers don’t have proper feedback based stabilization, so output voltage may change

depending on load

Power supplies will degrade over time (especially when working 24/7)

Some problems like degraded output filtering capacitors cannot be diagnosed even with a multimeter because

of the non-linear voltage form

Cable

The longer and thinner the cable - the higher its resistance - the greater the voltage drop will be under load

Even thick looking cable can have thin wires inside, so do not trust the outside cable diameter

Connector

MicroUSB connector is rated for the maximum current of 1.8A, but even this number cannot be guaranteed.

Trying to pass larger current (even momentarily) may result in a voltage dropping below USB specifications

Most of the boards can also be powered through GPIO pins. This can be used to bypass the microUSB

connector and thus to improve stability

SD card notes

A SD card is a complex storage device with an embedded controller that processes read, erase and write

operations, wear leveling, error and corruption detection, but it does not provide any diagnostic protocols like

S.M.A.R.T.

SD cards will degrade over time and may fail in the end in different ways - become completely or partially read-

only or cause a silent data corruption

SD card brand

Based on current prices and performance tests done by Armbian users Samsung Evo, Samsung Evo Plus and

Sandisk Ultra cards are recommended

Other good alternatives may be added to this page in the future

SD card size and speed class

SD card speed class and size does not influence the reliability directly, but larger size means larger amount of

lifetime data written, even if you are using 10-20% of the cards space

•

•

•

•

•

•

•

•

•

•

•

•

•

5.5Hardware troubleshooting guide

- 18/88 - 2020 by Armbian

Writing images to the SD card

If you wrote an image to the card it does not mean that it was written successfully without any errors

so always verify images after write using some tools like balenaEtcher which is currently the only popular and

cross-platform tool that does mandatory verify on write (more lightweight alternatives may be added to this

page in the future)

“Check for bad blocks” function available in some tools is mostly useless when dealing with SD cards

Note that balenaEtcher verifies only 1-2GB that are occupied by the initial unresized image, it does not verify

the whole SD card

•

•

•

•

5.5Hardware troubleshooting guide

- 19/88 - 2020 by Armbian

How to switch kernels?

Check this for more info.

How to troubleshoot?

Important: If you came here since you cannot get Armbian running on your

board please keep in mind that in 95 percent of all cases it is either a faulty/

fraud/counterfeit SD card or an insufficient power supply that is causing these

sorts of does not work issues!

If you broke the system you can try to get in this way. You have to get to u-boot

command prompt, using either a serial adapter or monitor and usb keyboard (USB

support in u-boot currently not enabled on all H3 boards).

After switching power on or rebooting, when u-boot loads up, press some key on the

keyboard (or send some key presses via terminal) to abort default boot sequence and

get to the command prompt:

U-Boot SPL 2015.07-dirty (Oct 01 2015 - 15:05:21) ... Hit any key to stop autoboot: 0 sunxi#

Enter these commands, replacing root device path if necessary. Select setenv line with

ttyS0 for serial, tty1 for keyboard+monitor (these are for booting with mainline kernel,

check boot.cmd for your device for commands related to legacy kernel):

setenv bootargs init=/bin/bash root=/dev/mmcblk0p1 rootwait console=ttyS0,115200 # or setenv bootargs init=/bin/bash root=/dev/mmcblk0p1 rootwait console=tty1 ext4l

System should eventually boot to bash shell:

root@(none):/#

Now you can try to fix your broken system.

How to unbrick the system? (outdated)

When something goes terribly wrong and you are not able to boot the system, this is

the way to proceed. You need some Linux machine where you can mount the failed SD

card. With this procedure you will reinstall the u-boot, kernel and hardware settings. In

most cases this should be enough to unbrick the board. It is recommended to issue a

filesystem check before mounting:

fsck /dev/sdX -f

Then mount the SD card and download those files (This example is only for Banana R1):

5.5Hardware troubleshooting guide

- 20/88 - 2020 by Armbian

http://www.armbian.com/kernel/
http://www.armbian.com/kernel/

http://apt.armbian.com/pool/main/l/linux-trusty-root-current-lamobo-r1/linux-trusty-root-current-lamobo-r1_4.5_armhf.deb http://apt.armbian.com/pool/main/l/linux-up

This is just an example for: Ubuntu Trusty, Lamobo R1, mainline kernel (next).

Alter packages naming according to this.

Mount SD card and extract all those deb files to it’s mount point.

dpkg -x DEB_FILE /mnt

Go to /mnt/boot and link (or copy) vmlinuz-4.x.x-sunxi kernel file to zImage.

If you upgrade from some very old build, you might need to update your boot script.

Example goes for Allwinner boards:

cd /mnt/boot wget https://raw.githubusercontent.com/armbian/build/master/config/bootscripts/boot-sunxi.cmd mv boot-sunxi.cmd boot.cmd mkimage -C none -A arm -T scri

Unmount SD card, move it to the board and power on.

How to build a wireless driver?

Install and recreate kernel headers scripts (optional)

armbian-config -> install kernel headers exit cd /usr/src/linux-headers-$(uname -r) make scripts

Go back to root directory and fetch sources (working example, use ARCH=arm64 on

64bit system)

cd git clone https://github.com/pvaret/rtl8192cu-fixes.git cd rtl8192cu-fixes make ARCH=arm

Load driver for test

insmod 8192cu.ko

Check dmesg and the last entry will be:

usbcore: registered new interface driver rtl8192cu

Plug the USB wireless adaptor and issue a command:

iwconfig wlan0

You should see this:

wlan0 unassociated Nickname:"<WIFI@REALTEK>" Mode:Auto Frequency=2.412 GHz Access Point: Not-Associated Sensitivity:0/0 Retry:off RTS thr:off Fragment thr:off Encry

Check which wireless stations / routers are in range

iwlist wlan0 scan | grep ESSID

5.5Hardware troubleshooting guide

- 21/88 - 2020 by Armbian

https://forum.armbian.com/topic/211-kernel-update-procedure-has-been-changed/

How to freeze your filesystem? (outdated)

In certain situations it is desirable to have a virtual read-only root filesystem. This

prevents any changes from occurring on the root filesystem that may alter system

behavior and it allows a simple reboot to restore a system to its clean state.

You need an ODROID XU4 or Allwinner A10, A20 or H3 board with legacy kernel where

we added support for overlayfs. Works only on Ubuntu Xenial. Login as root and

execute:

apt-get install overlayroot echo 'overlayroot="tmpfs"' >> /etc/overlayroot.conf reboot

After your system boots up it will always remain as is. If you want to make any

permanent changes, you need to run:

overlayroot-chroot

Changes inside this will be preserved.

How to run Docker? (outdated)

Preinstallation requirements:

Armbian 5.1 or newer with Kernel 3.10 or higher

Debian Jessie (might work elsewhere with some modifications)

root access

Execute this as root:

curl https://get.docker.com | sh

Test if Docker works correctly:

docker run -d -p 80:80 hypriot/rpi-busybox-httpd

… and point the browser of any device in the same network to http://<IP OF YOUR DEVICE>/

More info in this forum topic

•

•

•

5.5Hardware troubleshooting guide

- 22/88 - 2020 by Armbian

https://forum.armbian.com/topic/490-docker-on-armbian/

5.6 How to set wireless access point?

There are two different HostAP daemons. One is default and the other one is for some

Realtek wifi cards. Both have their own basic configurations and both are patched to

gain maximum performances.

Sources: https://github.com/igorpecovnik/hostapd

Default binary and configuration location:

/usr/sbin/hostapd /etc/hostapd.conf

Realtek binary and configuration location:

/usr/sbin/hostapd-rt /etc/hostapd.conf-rt

Since its hard to define when to use which you always try both combinations in case of

troubles. To start AP automatically:

Edit /etc/init.d/hostapd and add/alter location of your conf file DAEMON_CONF=/etc/hostapd.conf and

binary DAEMON_SBIN=/usr/sbin/hostapd

Copy /etc/network/interfaces.hostapd to /etc/network/interfaces

Reboot

Predefined network name: “BOARD NAME” password: 12345678

To change parameters, edit /etc/hostapd.conf BTW: You can get WPAPSK the long blob from wpa_passphrase

YOURNAME YOURPASS

5.7 How to connect IR remote?

Required conditions:

IR hardware

loaded driver

Get your remote configuration (lircd.conf) or learn. You are going to need the list of all

possible commands which you can map to your IR remote keys:

irrecord --list-namespace

To start with learning process you need to delete old config:

rm /etc/lircd.conf

1.

2.

3.

4.

5.

•

•

5.6How to set wireless access point?

- 23/88 - 2020 by Armbian

https://github.com/igorpecovnik/hostapd
http://lirc.sourceforge.net/remotes/
http://kodi.wiki/view/HOW-TO:Setup_Lirc#Learning_Commands

Than start the process with:

irrecord --driver=default --device=/dev/lirc0 /etc/lircd.conf

And finally start your service when done with learning:

service lirc start

Test your remote:

irw /dev/lircd

5.7How to connect IR remote?

- 24/88 - 2020 by Armbian

5.8 How to customize keyboard, time zone?

5.8.1 Attention:

The preferred method to change most of this stuff is by using the interactive

armbian-config tool which is shipped with all Armbian images.

Keyboard:

dpkg-reconfigure keyboard-configuration

System language:

Debian --> https://wiki.debian.org/ChangeLanguage dpkg-reconfigure locales # Ubuntu --> https://help.ubuntu.com/community/Locale update-locale LANG=[options] && d

Console font, codepage:

dpkg-reconfigure console-setup

Time zone:

dpkg-reconfigure tzdata

Screen resolution on other boards:

nano /boot/boot.cmd # example: # change example from # disp.screen0_output_mode=1920x1080p60 # to # disp.screen0_output_mode=1280x720p60 mkimage -C none -A arm -T s

Screen resolution within Xorg

Find matching HDMI output: xrandr --listmonitors Calculate VESA CVT mode lines (example for 1440x900) cvt 1440 900 Sample output: 1440x900 59.89 Hz (CVT 1.30MA) hsy

How to alter CPU frequency?

Some boards allow to adjust CPU speed

nano /etc/default/cpufrequtils

Alter min_speed or max_speed variable.

service cpufrequtils restart

How to downgrade a package via apt?

This is useful when you need to fall back to previous kernel version.

apt install linux-image-sun8i=5.13

This example is for H3 legacy kernel. Check this page for others.

Thx @maxlinux2000

5.8How to customize keyboard, time zone?

- 25/88 - 2020 by Armbian

https://forum.armbian.com/topic/10403-add-undetected-hdmi-resolution-to-x11xorg/
http://www.armbian.com/kernel/

How to toggle boot output?

Edit and change boot parameters in /boot/boot.cmd (not recommended) or variables in

/boot/armbianEnv.txt :

- console=both + console=serial

Recompile boot.cmd to boot.scr if it was changed:

mkimage -C none -A arm -T script -d /boot/boot.cmd /boot/boot.scr

Reboot.

Serial console on imx6 boards are ttymxc0 (Hummingboard, Cubox-i) or ttymxc1

(Udoo).

How to toggle verbose boot?

Using Armbian 5.05 to 5.20 you would need to touch/rm /boot/.force-verbose to increase

boot verbosity. With more recent Armbian builds you would have to alter the verbosity=

line in /boot/armbianEnv.txt (defaults to 1 which means less verbose, maximum value is 7).

How to provide boot logs for inspection?

When your SBC behaves strange first step is to check power supply and integrity of

boot media (armbianmonitor -c "$HOME"). Then look into your kernel logs. We made a tool

that grabs info and pastes it to an online pasteboard service. Please increase boot

verbosity as shown above (verbosity=7), reboot and then run

sudo armbianmonitor -u

Copy and past URL of your log to the forum, mail, …

How to change network configuration?

To get Wi-Fi working simply use nmtui , a simple console based UI for network-manager

(an example how to set up an AP with network-manager can be found here). To deal

with different Ethernet/Wi-Fi combinations there are six predefined configurations

available, you can find them in those files:

/etc/network/interfaces.bonding /etc/network/interfaces.default /etc/network/interfaces.hostapd /etc/network/interfaces.network-manager /etc/network/interfaces.r1 /

5.8.1Attention:

- 26/88 - 2020 by Armbian

http://redsymbol.net/linux-kernel-boot-parameters/
http://forum.odroid.com/viewtopic.php?f=52&t=25472&

By default /etc/network/interfaces is a copy of /etc/network/interfaces.default

BONDING: your network adapters are bonded in fail safe / “notebook” way.

DEFAULT: your network adapters are connected classical way.

HOSTAPD: your network adapters are bridged together and bridge is connected to the network. This allows you

to have your AP connected directly to your router.

All interfaces are handled by network-manager (nmtui / nmcli or using the GUI)

Router configuration for Lamobo R1 / Banana R1.

Switch configuration for Lamobo R1 / Banana R1.

You can switch configuration with copying.

cd /etc/network cp interfaces.x interfaces

(x = default,hostapd,bonding,r1)

Then check / alter your interfaces:

nano /etc/network/interfaces

1.

2.

3.

4.

5.

6.

5.8.1Attention:

- 27/88 - 2020 by Armbian

5.9 Armbian configuration utility

Is a base utility for configuring your board, divided into four main sections:

System - system and security settings,

Network - wired, wireless, Bluetooth, access point,

Personal - timezone, language, hostname,

Software - system and 3rd party software install.

The tool needs root privileges to work and can be launched by entering

sudo armbian-config at the terminal prompt or by clicking to the armbian-config menu item

on desktop images.

•

•

•

•

5.9Armbian configuration utility

- 28/88 - 2020 by Armbian

5.9.1 System

Install - installs to SATA, eMMC, NAND or USB. It gives you an option to install the system to more resilient

and faster internal or external media. You can also change filesystem type to ext2,3,4 or BTRFS (if supported),

Freeze - freeze or unfreeze kernel and board support packages, to avoid upgrading,

Nightly - switch between nightly automated beta and stable builds,

Bootenv - edit boot environment and alter kernel boot parameters,

Hardware - toggle board low level functions: UART, I2C, SPI, …

Switch - switch to/between alternative kernels: legacy, current, dev

SSH - reconfigure SSH dameon. Permit root login, toggle ssh key and mobile phone authetication,

Firmware - execute apt update and upgrade to update your system,

Zshell - toogle stock BASH and ZSH with Oh My ZSH and tmux

Enable - toggle desktop on and off (on desktop images)

Lightdm - change login managers from none to lightdm (on desktop images)

RDP - toggle remote desktop from Windows (on desktop images)

Overlayroot - toggle overlayroot (Ubuntu images)

Minimal - install minimal Armbian XFCE powered desktop,

Default - install Armbian XFCE powered desktop with web browser and extras.

5.9.2 Network

IP - choose to select dynamic or edit static IP address,

Hotspot - create or manage wireless access point. If your wireless adapter is recognized by a kernel, then

armbian-config utility auto selects best mode on the selected device. It can detect 802.11n, 802.11a and

802.11ac. It also knows how to handle some special Realtek adapters,

IPV6 - toggle IPV6 for apt and system,

Iperf3 - toogle network troughput tests daemon,

LTE - 3G/4G LTE modem management

WiFi - manage wireless networking. Connect with Wifi network. You can create multiple wireless connections at

the same time. They are managed by Network Manager,

BT install - pair Bluetooth devices without PIN code,

Advanced - edit network config manually,

Forget - disconnets and clear all wireless connections.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.9.1System

- 29/88 - 2020 by Armbian

https://ohmyz.sh/
https://en.wikipedia.org/wiki/Tmux

5.9.3 Personal settings

Timezone - change timezone,

Locales - reconfigure language and character set,

Keyboard - change console keyboaard settings,

Hostname - change hostname,

Mirror - change to backup APT repository mirror in case of troubles,

Welcome - toggle welcome screen items.

5.9.4 Software

Software installation menu provides automated install of the following packages.

softy

TV headend (IPTV server)

Syncthing (personal cloud)

SoftEther VPN server (VPN server)

Plex (Plex media server)

Radarr (Movie downloading server)

Sonarr (TV shows downloading server)

Transmission (torrent server)

ISPConfig (WEB & MAIL server)

NCP (Nextcloud personal cloud)

Openmediavault NAS (NAS server)

PI hole (ad blocker)

UrBackup (client/server backup system)

Docker (Docker CE engine)

Mayan EDMS (Document management system within Docker)

MiniDLNA (media sharing)

Monitor = simple CLI monitoring

Diagnostics = create a summary of logs and upload them to paste.bin

Toggle kernel headers, RDP service, Thunderbird and Libreoffice (desktop builds)

5.9.5 Sources

https://github.com/armbian/config

•

•

•

•

•

•

•

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

•

•

•

5.9.3Personal settings

- 30/88 - 2020 by Armbian

https://tvheadend.org/
https://syncthing.net/
https://www.softether.org/
https://www.plex.tv/
https://radarr.video/
https://sonarr.tv/
https://transmissionbt.com/
https://www.ispconfig.org/
https://nextcloudpi.com
http://www.openmediavault.org/
https://pi-hole.net
https://www.urbackup.org/
https://www.docker.com
https://www.mayan-edms.com/
http://minidlna.sourceforge.net/
https://github.com/armbian/config

5.10 Device Tree overlays

Most in-circuit and GPIO based interfaces (SPI, I2C, I2S, UART, …) don’t have a

mechanism for detecting and identifying devices connected to the bus, so Linux kernel

has to be told explicitly about the device and its configuration details.

While Device Tree is a way of describing hardware configuration to the kernel, Device

Tree overlays are a way for modifying the DT in order to provide the kernel and kernel

drivers with details about external devices or to activate interfaces disabled by default.

Note: from the Linux kernel maintainer perspective all unused in-circuit type interfaces

that use GPIO pins should be disabled by default and all pins on pin headers or

soldering pads will be configured as standard GPIOs.

Note: from the Linux kernel maintainer perspective all dedicated interfaces like USB,

Ethernet or analog audio that are wired to soldering pads or a pin headers instead of

specialized sockets (like USB socket, Ethernet socket or 3.5mm jack) will be left

disabled by default.

Armbian specific notes

DT overlays are a Work-in-Progress (WIP) feature, present only in fresh images starting with 5.30, nightly

and user made images

For older images (even upgraded to 5.30 or later) manual update of the u-boot and the boot script is required

Currently implemented only for sunxi based devices that use mainline u-boot and kernel

Please note that different SoCs will have different sets of available overlays.

Quick start

Check the README.<soc-id>-overlays in /boot/dtb/overlay/ (32-bit SoCs) or /boot/dtb/allwinner/overlay/ (64-bit SoCs) for

a list of provided overlays, their required and optional parameters

Add names of overlays you want to activate to overlays= line in /boot/armbianEnv.txt , separated with spaces

Add required parameters with their values to /boot/armbianEnv.txt , one per line

Add optional parameters with their values to /boot/armbianEnv.txt if you want to change the default value, one

per line

If you didn’t find the required overlay or want to change one of provided overlays, refer to “Using custom

overlays” section

Reboot

•

•

•

1.

2.

3.

4.

5.

6.

5.10Device Tree overlays

- 31/88 - 2020 by Armbian

Using custom overlays

Check here for some example overlays

Copy or create your overlay file (with .dts extension) on the device

Change I2C or SPI bus number, GPIO and pinctrl pins, compatible string to match your SoC if necessary

Compile and activate the overlay by running armbian-add-overlay <overlay_file.dts> as root, i.e.

sudo armbian-add-overlay sht15.dts

Reboot

armbianEnv.txt entries reference

overlay_prefix - prefix for the DT and overlay file names, set at OS image creation time

overlays - list of overlays to activate from kernel directory

user_overlays - list of overlays to activate from /boot/overlay-user/ directory

param_* - overlay parameters

Kernel provided vs user provided overlays

Overlays can be loaded from 2 locations:

/boot/dtb/overlay/ (/boot/dtb/allwinner/overlay/ for 64-bit SoCs) - kernel provided overlays

/boot/overlay-user/ - user provided overlays

Main differences between these locations:

Kernel provided overlays are updated with the kernel packages, any changes to this directory (including new

files) will be lost on kernel upgrade

Kernel provided directory may contain overlays for different SoCs, so overlay file name pattern will be

<prefix>-<name> , for example sun8i-h3-i2c0.dtbo , where sun8i-h3 is the prefix and i2c0 is the name

Kernel provided overlays are activated by the overlay name (i.e. i2c0), and the prefix is set at OS image

creation time

User provided overlays directory is empty by default and is meant for storing and using user created overlays

that are not present in the kernel packages or modified stock overlays

User provided overlays are activated by the file name (excluding the extension), i.e. for file adafruit13m.dtbo

overlay name would be adafruit13m

1.

2.

3.

4.

5.

•

•

•

•

•

•

•

•

•

•

•

5.10Device Tree overlays

- 32/88 - 2020 by Armbian

https://github.com/zador-blood-stained/sunxi-DT-overlays-armbian/tree/master/examples

Activation

DT overlays are activated by editing u-boot environment file /boot/armbianEnv.txt

Kernel provided overlays are activated by adding a name to the overlays variable

User provided overlays are activated by adding a name to the user_overlays variable

No more than one overlays line and one user_overlays line can be present in the environment file

Multiple names should be separated by space

If activated overlays have parameters marked as “Required”, those parameters have to be set to proper values

Reboot is required for any changes to take effect

Overlay parameters

Some overlays have additional parameters that can be set.

Parameters marked as “Required” have to be set if overlay with these parameters is

activated, other parameters are not mandatory if default value is suitable.

Parameters are set by adding their name and value to /boot/armbianEnv.txt , each

parameter should be added on a new line.

Please refer to README.<SoC_prefix>-overlays files in /boot/dtb/overlay/

(/boot/dtb/allwinner/overlay/ for 64-bit SoCs) directory for supported parameters, i.e.

README.sun8i-h3-overlays for H3 based boards.

Parameters of type pin require special format:

Value consists of a letter P , a letter that signifies the pin bank and a number of the pin in the bank

Letters should be upper case

Numbers should not contain leading zeros

Examples: good - PA9 , PG12 ; bad - pa2 , PG08

Overlay bus selection

SoCs may contain multiple bus controllers of the same type, i.e. Allwinner H3 contains

2 SPI controllers and Allwinner A20 contains 4 SPI controllers.

•

•

•

•

•

•

•

•

•

•

5.10Device Tree overlays

- 33/88 - 2020 by Armbian

Please refer to your board documentation and schematic to determine what pins are

wired to the pin headers and thus what bus number should be used in each case.

Overlay pinmux conflicts

Some controllers may share the SoC pins in some configurations. For example on

Allwinner H3 UART 3 and SPI 1 use the same pins - PA13 , PA14 , PA15 , PA16 . In this case

activating both UART 3 and SPI 1 would result in a conflict, and on practice only one

interface (either SPI or UART) will be accessible on these pins.

Please check the SoC specific README, board schematic, SoC datasheet or other

documentation if you are unsure about possible conflicts if activating multiple overlays

for the controllers that use shared (muxed) pins.

Overlay device endpoint conflicts

Overlays for devices that use addresses or similar mechanisms (i.e. SPI chip selects)

can’t be activated simultaneously if addresses (chip selects) are identical.

For example A20 SPI controller 1 has only one hardware chip select, so spi-spidev and

spi-jedec-nor overlays cannot be activated both if they would use the same bus number

and chip select.

Overlay compatibility

Device Tree overlays for different platforms and SoCs are not directly compatible. This,

for example, means that overlays for H3 may need some changes to work on A20, and

that Raspberry Pi overlays will need adjustments in order to be used on Allwinner

based boards.

Rework may include changing labels, references (phandles) and pinconf bindings.

Notes regarding SPI and I2S overlays

Activating a device on SPI or I2S bus may require more than one overlay. In case a bus

overlay like spi0 or i2s0 exist for the target SoC they need to be activated in addition

to a slave device overlay (provided or custom/user-made). Please note that these

overlays (spi0 , i2s0) do not enable any slave devices (like spidev or I2S codec).

5.10Device Tree overlays

- 34/88 - 2020 by Armbian

Debugging

As overlays and overlay parameters are applied by the u-boot, it is impossible to get any

debugging information (such as error messages) from the OS.

Serial console on UART 0 is required to debug DT overlay related problems.

Example /boot/armbianEnv.txt contents:

verbosity=1 console=serial overlay_prefix=sun8i-h3 rootdev=UUID=bd0ded76-1188-4b52-a20a-64f326c1f193 rootfstype=ext4 overlays=w1-gpio uart1 i2c0 spi-spidev param_w1

Example of serial console log when using several overlays:

Executing script at 43100000 U-boot loaded from SD Boot script loaded from mmc 265 bytes read in 182 ms (1000 Bytes/s) 5074230 bytes read in 532 ms (9.1 MiB/s) 5

5.10Device Tree overlays

- 35/88 - 2020 by Armbian

5.11 Migration from Bananian to Armbian

While technically possible to do an in-place upgrade/crossgrade from latest Bananian

release (or similar SBC distros) to Armbian currently there exists no tool helping with

this and most probably will never exist. At the bottom is explained where to find

ressources that help with a manual in-place upgrade but we start with outlining the

problems and our recommendations:

5.11.1 The challenges:

SD cards wear out after a certain amount of data being written to

Only reasonable base for an migration to Armbian would be an updated Bananian

installation (Bananian 16.04, already Debian Jessie based, Nico’s 4.4 kernel). In case

Bananian users are still on version 15.04 or earlier they need to upgrade to a more

recent Bananian version anyway to move Bananian’s base to Jessie. Such

apt-get dist-upgrade tasks come with heavy write activity. Especially when planning a dist-

upgrade to Stretch later this amount of random write activity on older/smaller SD cards

might kill them. If the SD card is not brand new it’s highly recommended to create a

clone/backup first prior to every upgrade step. If the SD card is really old please be

prepared that it might not survive an apt-get dist-upgrade .

All hardware will die eventually

A lot of Bananian installations today have been running 24/7 for 3 years or even longer.

While these little SBC are well suited for light-weight server tasks, the hardware can’t

exactly be called ‘server grade’. Please keep this in mind if you’re about to spend some

time on a manual migration attempt that once you’re done maybe your hardware will

stop working few weeks/months later if it already runs +24 months.

Hardware up to the task?

The vast majority of boards Bananian runs on is based on Allwinner’s dual core A20

SoC which was a nice improvement over the first single-core Raspberry Pis few years

ago but is pretty slow by today’s standards. An awful lot of users (us Armbians all

included) were excited by A20’s ‘native SATA’ capabilities few years ago just to realize

after purchase when using SATA attached storage that it’s awfully slow and most

5.11Migration from Bananian to Armbian

- 36/88 - 2020 by Armbian

https://www.bananian.org/hardware

probably the slowest ‘native’ SATA implementation existing (please wake up if in doubt

and educate yourself here, here or here. Important: combining Allwinner’s crappy SATA

implementation with port multipliers is always wrong).

At the time of this writing (Oct 2017) Armbian supports +25 other ARM boards that

show between 2 and 6 times better CPU performance than A20 devices. +20 boards we

support show better network performance (A20 Gigabit Ethernet is not fully capable of

940 Mbits/sec in both directions). +15 boards support 2GB DRAM (a few even more

just recently). And if you don’t need Gigabit Ethernet you can get a new and fully

supported board still better suited for light-weight server tasks than any Banana Pi for

as less as $11 shipping included (check this overview please).

While this diversity of ARM species might be confusing the good news is: When

Armbian is running on them they all behave the same.

5.11.2 Alternatives to an in-place migration:

Continue on same hardware but prevent SD card hassles

Especially if you run since years off the same SD card please be prepared that it might

not survive an apt-get dist-upgrade and similar upgrade/crossgrade tasks. It’s strongly

recommended to clone/backup your card prior to every necessary upgrade step. Since

this is time consuming and just a measure to prepare for what will happen in the future

anyway (your SD card failing eventually – if you’re lucky immediately, if you’re out of

luck it will corrupt a lot of data dying slowly) a great idea is to buy a new one now.

Please see our community’s collection of SD card performance tests and especially the

3 links at the top dealing with reliability concerns.

Once you bought a new, fast and hopefully reliable SD card, you should test it

according to our documentation, then burn a fresh Armbian image on it and manually

transfer data and settings from your Bananian installation. This way you preserve your

current settings/data on the old Bananian SD card saving you also a lot of time/efforts

to clone/backup stuff.

Important note: if you’re interested in NAS use cases you could also choose an OMV

image from official download location (all the ARM board images are now based on

Armbian, funnily even the ones for Raspberry Pi)

5.11.2Alternatives to an in-place migration:

- 37/88 - 2020 by Armbian

https://forum.armbian.com/topic/1925-some-storage-benchmarks-on-sbcs/&do=findComment&comment=34192
http://linux-sunxi.org/Sunxi_devices_as_NAS#Influence_of_the_chosen_OS_image_on_NAS_performance
https://forum.openmediavault.org/index.php/Thread/19871-Which-energy-efficient-ARM-platform-to-choose/?postID=154980#post154980
https://github.com/armbian/build/issues/548#issuecomment-332918004
https://forum.armbian.com/topic/1351-h3-board-buyers-guide/&do=findComment&comment=28169
https://forum.armbian.com/topic/954-sd-card-performance/
https://docs.armbian.com/User-Guide_Getting-Started/#how-to-prepare-a-sd-card
https://docs.armbian.com/User-Guide_Getting-Started/#how-to-prepare-a-sd-card
https://sourceforge.net/projects/openmediavault/files/

Replacing the hardware

If your Bananian installation has been running for years, you better think about

evaluating new hardware now. As explained above, A20’s SATA implementation is

awfully slow compared to good SATA implementations (Espressobin, Clearfog, Helios4)

or even recent USB3 solutions, also Banana Pis can not saturate Gigabit Ethernet. It’s

almost 2018 now and we can choose from a variety of energy efficient boards more

suited for the job.

My personal strategy was turning the various A20 servers into backup devices now

receiving btrfs snapshots from better suited ARM servers in the meantime. New

installation on new board, carefully migrating settings from Bananas, Cubietrucks or

Lime boards to new server, testing, testing, testing, new installation on A20 device,

setting up btrfs send|receive, testing, testing, testing, done.

5.11.3 In-place migration tipps:

Since there is no easy migration tool you can only rely on contents collected below

https://github.com/armbian/build/issues/648 – if you read carefully through we had

some hope experienced Bananian users would be volunteering in providing an in-place

upgrade tool from Bananian to Armbian but unfortunately to no avail. So 6 months after

the problem came to our attention we’re now providing this document to help those

affected taking the right decisions. Still no need to hurry, Bananian receives bug and

security fixes for another 6 months so take your time and evaluate carefully which way

to choose.

Trivia: Anyone understanding german will enjoy Nico’s refreshing Rise and Fall of

Bananian Linux talk.

5.11.3In-place migration tipps:

- 38/88 - 2020 by Armbian

https://forum.armbian.com/topic/1925-some-storage-benchmarks-on-sbcs/&do=findComment&comment=34192
https://forum.armbian.com/profile/7-tkaiser/
https://frank-mankel.de/kategorien/36-froscon/288-froscon-12
https://frank-mankel.de/kategorien/36-froscon/288-froscon-12

6. Hardware Notes

6.1 Enable Hardware Features

Some boards require some manual configuration to turn on/off certain features

In some cases, the procedure is “less than obvious”, so we document some basic

examples here.

6.2 Generic howto for Allwinner devices

6.2.1 Legacy or current kernel ?

Many Armbian images come in two flavours : Legacy (using an older kernel version)

and current (up-to-date LTS kernel). Depending on kernel version, the procedure to

enable/disable features is not the same.

Legacy kernel (4.19.x): DT (Device Tree) overlays

Current kernel (5.4.x) : DT (Device Tree) overlays

Note: Support for older kernel versiones (like 3.4.x or 3.10.x) has been dropped.

6.2.2 How to reconfigure video output?

This affect current kernel only.

U-Boot supports HDMI and LCD output on Allwinner sunxi SoCs, LCD output requires

the CONFIG_VIDEO_LCD_MODE Kconfig value to be set.

•

•

6.Hardware Notes

- 39/88 - 2020 by Armbian

The sunxi U-Boot driver supports the following video-mode options:

monitor=[none|dvi|hdmi|lcd|vga|composite-*] - Select the video output to use

none : Disable video output.

dvi/hdmi : Selects output over the hdmi connector with dvi resp. hdmi output format, if edid is used the format

is automatically selected.

lcd : Selects video output to a LCD screen.

vga : Selects video output over the VGA connector.

composite-pal/composite-ntsc/composite-pal-m/composite-pal-nc : Selects composite video output, note the specified

resolution is ignored with composite video output.

Defaults to monitor=dvi .

hpd=[0|1] - Enable use of the HDMI HotPlug Detect feature 0: Disabled. Configure

DVI/HDMI output even if no cable is detected 1: Enabled. Fallback to the LCD / VGA

/ none in that order (if available) Defaults to hpd=1 .

hpd_delay=<int> - How long to wait for the HDMI HPD signal in milliseconds When the

monitor and the board power up at the same time, it may take some time for the

monitor to assert the HPD signal. This configures how long to wait for the HPD

signal before assuming no cable is connected. Defaults to hpd_delay=500 .

edid=[0|1] - Enable use of DDC + EDID to get monitor info 0: Disabled. 1: Enabled. If

valid EDID info was read from the monitor the EDID info will overrides the xres, yres

and refresh from the video-mode env. variable. Defaults to edid=1 .

overscan_x/overscan_y=<int> - Set x/y overscan value This configures a black border on

the left and right resp. top and bottom to deal with overscanning displays. Defaults

to overscan_x=32 and overscan_y=20 for composite monitors, 0 for other monitors.

For example to always use the HDMI connector, even if no cable is inserted, using edid

info when available and otherwise initalizing it at 1024x768@60Hz, use:

setenv video-mode sunxi:1024x768-24@60,monitor=dvi,hpd=0,edid=0 .

Parameters regarding video must be saved into U-Boot environment file since they must

be read before reading boot script. You can do this by adding saveenv command at the

end of boot script (boot.cmd). Remember to recompile boot.cmd to boot.scr and note

that changes will come into action after second boot.

6.2.3 What flavour am I using ?

Best way to know is by checking your kernel version :

•

•

•

•

•

•

•

•

•

•

•

6.2.3What flavour am I using ?

- 40/88 - 2020 by Armbian

root@bananapipro:~# uname -a Linux bananapipro 4.5.2-sunxi #11 SMP Thu Apr 28 21:53:25 CEST 2016 armv7l GNU/Linux

In this example the kernel version is 4.5.2 so you can use DT to tweak some settings. If

you get a kernel version 3.X then you’ll be certainly using FEX like on an Orange Pi

Plus 2E :

root@orangepiplus2e:~# uname -a Linux orangepiplus2e 3.4.112-sun8i #10 SMP PREEMPT Wed Jun 1 19:43:08 CEST 2016 armv7l GNU/Linux

6.2.4 FEX (outdated/unsupported, informational only)

Which file should I edit

Armbian embed a lot of BIN files, but a symlink point to the one in use :

root@orangepiplus2e:~# ls -la /boot/script.bin lrwxrwxrwx 1 root root 22 Jun 1 20:30 /boot/script.bin -> bin/orangepiplus2e.bin

Updating a FEX

You may need to use sudo with all the following commands.

The whole process won’t overwrite any of your files. If you’re paranoid, you can make a

proper backup of your BIN file :

cp /boot/script.bin /boot/bin/script.bin.backup

Then you can decompile your BIN into a FEX :

bin2fex /boot/script.bin /tmp/custom.fex

Finally you can edit your FEX file with your favorite text editor and compile it back to a

BIN :

fex2bin /tmp/custom.fex /boot/bin/custom.bin

The last step is to change the symlink to use your custom BIN :

ln -sf /boot/bin/custom.bin /boot/script.bin

6.3 H3 based Orange Pi, legacy kernel

6.3.1 Enable serial /dev/ttyS3 on pins 8 and 10 of the 40 pin header

Update the FEX configuration (which is compiled into a .bin) located at /boot/script.bin

Decompile .bin to .fex

cd /boot bin2fex script.bin > custom.fex rm script.bin # only removes symbolic link

6.2.4FEX (outdated/unsupported, informational only)

- 41/88 - 2020 by Armbian

Edit .fex file

[uart3] uart_used = 1 ; Change from 0 to 1 uart_port = 3 uart_type = 2 ; In this case we have a 2 pin UART uart_tx = port:PA13<3><1><default><default> uart_rx = por

Compile .fex to .bin

fex2bin custom.fex > script.bin

Reboot

Notice that /dev/ttyS3 appears. That is your new UART device.

6.3.2 Connect your LCD display

I tried three different display connection types: I2C, (4bit) parallel and SPI. All of them

are working perfectly with my image. I didn’t took a picture of the third one. It’s a

standard Hitachi HD44780 based 20×4 LCD, wired and tested according to Wiring(B)PI

example.

I2C

I am using this code for mainline kernel and with changed line: /dev/i2c-%u = /dev/i2c-2

for Legacy kernel.

SPI

6.3.2Connect your LCD display

- 42/88 - 2020 by Armbian

https://github.com/LeMaker/WiringBPi
https://github.com/LeMaker/WiringBPi
https://github.com/vvromanov/cb_i2c_lcd
https://github.com/vvromanov/cb_i2c_lcd/blob/master/i2c_lcd.c#L28

I am using 2.4″ 240×320 SPI TFT LCD Serial Port Module+5/3.3V Pbc Adapter Micro SD ILI9341

Wire according to this map.

You have to use Armbian 1.5 or newer. Currently working only under Legacy kernel.

Add this to your /etc/modules: fbtft_device name=adafruit22a rotate=90 speed=48000000 fps=50 gpios=reset:25,led:19,dc:24

Reboot

Test – display some picture on the screen: fbi -d /dev/fb2 -T 1 -noverbose -a yourimage.jpg

Troubleshooting and settings for other displays LVDS

Currently working only under Legacy kernel.

Image has pre-loaded settings for two LVDS display.

To enable 7 inch.

ln -sf /boot/bin/bananapilcd7.bin /boot/script.bin

To enable 5 inch.

ln -sf /boot/bin/bananapilcd5.bin /boot/script.bin

•

•

•

•

•

•

•

6.3.2Connect your LCD display

- 43/88 - 2020 by Armbian

http://www.google.com/search?q=2.4%E2%80%B3+240%C3%97320+SPI+TFT+LCD+Serial+Port+Module%2B5%2F3.3V+Pbc+Adapter+Micro+SD+ILI9341&oq=2.4%E2%80%B3+240%C3%97320+SPI+TFT+LCD+Serial+Port+Module%2B5%2F3.3V+Pbc+Adapter+Micro+SD+ILI9341
http://blog.riyas.org/2014/07/quickly-test-il9341-22-inch-22-spi-tft-raspbmc-fbtft.html
https://github.com/notro/fbtft/wiki

If you need touch screen support, add this module to your /etc/modules

ft5x_ts

6.3.2Connect your LCD display

- 44/88 - 2020 by Armbian

6.4 Allwinner A10 & A20 boards

6.4.1 Overview

Both kernels are stable and production ready, but you should use them for different

purposes since their basic support differ:

legacy: video acceleration, NAND support, connecting displays

mainline: headless server, office desktop operations (not multimedia oriented)

6.4.2 Legacy

System images with legacy kernel

Please note that upstream support for kernel 3.4.x has ended in 2017 so this kernel will not receive security updates in the
future.

Kernel 3.4.x with large hardware support, headers and some firmware included

Enabled audio devices: analog, 8 channel HDMI, spdif and I2S (if wired and enabled in HW configuration)

Bluetooth ready (working with supported external keys)

Enabled overlayfs

I2C ready and tested with small 16×2 LCD. Basic i2c tools included.

SPI ready and tested with ILI9341 based 2.4″ TFT LCD display.

Drivers for small TFT LCD display modules.

Clustering / stacking

Onboard LED attached to SD card activity (script.bin)

Bugs or limitation

NAND install sometime fails. Workaround: install Lubuntu to NAND with Phoenix tools and run install again.

Shutdown results into reboot under certain conditions.

•

•

•

•

•

•

•

•

•

•

•

•

•

6.4Allwinner A10 & A20 boards

- 45/88 - 2020 by Armbian

https://github.com/linux-sunxi/linux-sunxi
http://en.wikipedia.org/wiki/I%C2%B2C
https://github.com/notro/fbtft
http://en.wikipedia.org/wiki/Cluster_(computing)
http://dl.cubieboard.org/software/a20-cubietruck/lubuntu/
http://docs.cubieboard.org/downloads

6.4.3 Mainline

System images with mainline kernel

Mainline with large hardware support, headers and some firmware included

Docker ready

Enabled audio devices: analog, SPDIF (if available) & USB

USB / UAS – more efficient disk access over USB (A20 and H3)

CAN bus – Controller Area Network

USB OTG connector – OTG or host mode

Bluetooth ready (working with supported external keys)

I2C ready and tested with small 16×2 LCD. Basic i2c tools included.

Onboard LED attached to SD card activity (not enabled on all boards yet)

Bugs or limitation

No HW acceleration for desktop and video decoding

NAND is not supported yet

Screen output from kernel is set to HDMI by default. Boot loader can detect and switch, kernel not.

HDMI audio is not supported yet

SATA port multiplier support is disabled by default, can be enabled by adding kernel parameter

ahci_sunxi.enable_pmp=1

6.4.4 Desktop

YOUTUBE

HW accelerated video playback (legacy kernel only)

MALI Open GLES (legacy kernel only)

Pre-installed: Firefox, LibreOffice Writer, Thunderbird

Lightweight XFCE desktop

Autologin, when normal user is created – no login manager (/etc/default/nodm)

6.4.5 Notes

Setting non-standard monitor settings for A10, A20 and A31 based boards in u-boot

Following commands (example) needs to be executed in u-boot command prompt:

setenv video-mode sunxi:1024x768-24@60,monitor=dvi,hpd=0,edid=0,overscan_x=1,overscan_y=2 saveenv

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

6.4.3Mainline

- 46/88 - 2020 by Armbian

http://www.kernel.org/
http://linux-sunxi.org/USB/UAS
https://en.wikipedia.org/wiki/CAN_bus
http://linux-sunxi.org/USB_Gadget
http://en.wikipedia.org/wiki/I%C2%B2C

Since environment is reset after flashing u-boot, you need to do this after every u-boot

upgrade or put this to u-boot script

6.4.6 Resources

Armbian packages repository

6.4.6Resources

- 47/88 - 2020 by Armbian

http://www.armbian.com/kernel/

6.5 Allwinner H3 boards

Overview

The H3 SoC from Allwinner is meant for OTT boxes and therefore its reference design

is not accompanied by a separate PMIC (power management IC) unlike A series

Allwinner SoCs (like A10, A20, A64, …). No PMIC means also that there is no battery

charging/monitoring implemented so H3 is not that much suited for mobile devices. On

the other hand some pretty cheap H3 boards were released that can be driven with

rather low consumption and therefore combining H3 devices with a battery became a

real use case with boards like Orange Pi One/Lite, NanoPi NEO and Neo AIR.

As usual SoC and device information can be found in Linux-sunxi wiki. Same applies to

status of mainlining kernel efforts. Adding to the usual SoC feature set (I2C, SPI, PWM,

UART, SDIO, GPIO and so on) H3 has one USB OTG port, 3 real USB host ports (not

exposed on all devices), Fast- and Gigabit Ethernet capablities (board specific), a

Mali400MP2 GPU and Allwinner’s video encoding/decoding engine.

When CPU or GPU cores are fully utilized H3 tends to overheat over time like any other

popular ARM SoC released within the last 2-3 years. With Armbian we provide sane

dvfs (dynamic voltage frequency scaling) settings that help a lot with throttling. In case

you plan to operate your H3 device constantly under high load please check Armbian

forums first since boards behave differently (related to voltage regulation and PCB size

and design – some use copper layers to spread the heat away from the SoC). Also

consider applying a heatsink to the SoC (a fan should not be necessary unless you want

to do number crunching on your board and then you obviously chose the wrong device).

You find some differentiation criteria regarding supported H3 devices as well as an

overview/history of H3 software support in our forums or use Jean-Luc’s nice

comparison table (both slightly outdated since more H3 devices have been released in

the meantime).

Kernel support

Almost all features of the H3 SoC are supported on Armbian’s current branch. Please

refer to the Linux sunxi support sheet.

6.5Allwinner H3 boards

- 48/88 - 2020 by Armbian

http://linux-sunxi.org/Orange_Pi_Lite
http://linux-sunxi.org/FriendlyARM_NanoPi_NEO
http://linux-sunxi.org/H3
http://linux-sunxi.org/Category:H3_Devices
http://linux-sunxi.org/Linux_mainlining_effort
https://forum.armbian.com/topic/1351-h3-board-buyers-guide/
https://forum.armbian.com/topic/1351-h3-board-buyers-guide/
http://www.cnx-software.com/2016/06/08/allwinner-h3-boards-comparison-tables-with-orange-pi-banana-pi-m2-nanopi-p1-and-h3-olinuxino-nano-boards/#comments
http://www.cnx-software.com/2016/06/08/allwinner-h3-boards-comparison-tables-with-orange-pi-banana-pi-m2-nanopi-p1-and-h3-olinuxino-nano-boards/#comments
https://linux-sunxi.org/Linux_mainlining_effort

Default settings

CPU frequency settings are 240-912 MHz on NanoPi NEO, 240-1200 MHz on BPi M2+, NanoPi M1 and Beelink

X2, 480-1200 MHz on OPi One/Lite and 480-1296 MHz on the other boards (cpufreq governor is interactive

therefore the boards only increase CPU speed and consumption when needed). The differences are due to

different voltage regulators and heat dissipation behaviour.

Armbian unlike older/other H3 OS images uses the green led as ‘power on’ indicator (blinking means ‘ready to

login’ or ‘shutting down’), the red led (blue on NanoPis) can be used for your own purpose.

Tips and tricks (general)

An insufficient power supply is the root cause of many weird symptoms/problems. Never trust in ratings

written on the PSU since they might be wrong, the PSU might be old/dying and cable/contact resistance adds

to problems. In other words: Before you blame Armbian for strange behaviour please try at least one second

power supply (this applies to both PSU and cable between PSU and board if this is separate – especially USB

cables really suck due to high resistance leading to severe voltage drops).

In case you experience instabilities check your SD card using armbianmonitor -c $HOME and think about installing

RPi-Monitor for H3 to get an idea whether you suffer from overheating (sudo armbianmonitor -r will install

everything needed).

Especially for desktop images the speed of your SD card matters. If possible try to use our nand-sata-install

script to move the rootfs away from SD card. The script also works with USB disks flawlessly (some background

information).

Tips and tricks (H3 specific / lowering consumption) (outdated)

Recent research showed that H3 boards operated as wired IoT nodes need way less

power compared to Raspberry Pis in the same situation (ethernet active). If you want to

use your H3 device headless (server/IoT) and care about power consumption then there

•

•

•

•

•

6.5Allwinner H3 boards

- 49/88 - 2020 by Armbian

http://www.cnx-software.com/2016/03/17/rpi-monitor-is-a-web-based-remote-monitor-for-arm-development-boards-such-as-raspberry-pi-and-orange-pi/
https://forum.armbian.com/topic/793-moving-to-harddisk/
https://forum.armbian.com/topic/793-moving-to-harddisk/

exist a couple of tweaks to get your board being more energy efficient when using in

the meantime unsupported 3.x kernel (no tests done yet with up-to-date legacy/current

kernel):

Disabling HDMI/GPU saves ~200mW.

Allowing to temporarely only negotiate a Fast Ethernet connection on GbE capable boards saves +350 mW.

Adjusting DRAM clockspeed is surprisingly another way to control consumption (on NanoPi NEO for example

changing DRAM clockspeed between 132 MHz and 672 MHz results in consumption differences of 470mW).

Limiting maximum CPU clockspeed will help with lowering maximum consumption (think about scripts running

amok or something going terribly wrong), the same applies to limiting the count of active CPU cores.

Choosing a board with Fast instead of Gigabit Ethernet or disabling GbE on the latter using ethtool or ifconfig

saves at least 150 mW (board specific).

As an example: We chose default Armbian settings for NanoPi NEO to ensure this board

is not able to exceed 2W consumption when running with no peripherals connected.

This resulted in CPU and DRAM clockspeed of just 480/408 MHz while booting (the

first ~20 seconds). In normal operation we limit maximum CPU clockspeed to 912 MHz

to stay below the 2W consumption barrier even in worst case scenarios.

In case you want to have a few more percent maximum CPU performance you would

need to set maximum cpufreq to 1200 MHz instead of ‘just’ 912 MHz maximum CPU

clock using our new h3consumption tool. Be warned: This will both heavily increase

consumption and SoC temperature since exceeding 912 MHz CPU clockspeed means

feeding the SoC with 1.3V instead of 1.1V core voltage (most smaller H3 devices use a

voltage regulator only switching between two voltages to feed the SoC based on load).

Walking this route in the other direction is more interesting: In case you want to use an

H3 device as IoT node you might want to limit both idle and maximum consumption.

That should involve disabling stuff not needed (eg. HDMI/GPU since this saves 200mW)

or limiting ressource consumption: Lowering maximum clockspeeds for both CPU and

DRAM or even disabling CPU cores (which helps not with idle consumption since ARM

cores enter low-power modes if not needed but can help lowering maximum

consumption requirements).

Since all of this stuff is based on recent research and being still WiP please consider

reading through relevant threads in Armbian forums and join development/research/

discussions: SBC consumption/performance comparisons and Default settings for

NanoPi NEO/Air.

•

•

•

•

•

6.5Allwinner H3 boards

- 50/88 - 2020 by Armbian

https://forum.armbian.com/topic/1878-testers-wanted-h3consumption-to-be-included-into-future-armbian-releases/
https://forum.armbian.com/topic/1748-sbc-consumptionperformance-comparisons/
https://forum.armbian.com/topic/1728-rfc-default-settings-for-nanopi-neoair/
https://forum.armbian.com/topic/1728-rfc-default-settings-for-nanopi-neoair/

6.6 Allwinner H5 and A64 boards

Overview

See the generic Allwinner page

Warning

Using the board without cooling in conjunction with the stable release of Ambian using

kernel 4.19.y there is a risk of the board getting permanently damaged due to

overheating. If you decide to try the board without cooling, you can use

sudo armbianmonitor -r to keep an eye on the temperatures.

6.6Allwinner H5 and A64 boards

- 51/88 - 2020 by Armbian

https://docs.armbian.com/Hardware_Allwinner/

6.7 Allwinner H6

CPU frequency

See the generic Allwinner page

The H6 CPU frequency has ben soft-capped at 1,48 GHz to avoid thermal throttling too

fast. This limit can be lifted by editing /etc/default/cpufrequtils and set MAX_SPEED to

1810000 .

With the release of Armbian 20.05 “Kagu” new thermal zones have been added making

this limitation obsolete and therefore has been removed. All H6 boards now clocking at

the highest possible value OOB.

Warning Adding proper cooling is highly recommended.

PCIe (un-)supported

Some H6 SoC based boards (like Pine H64 Model a, discontinued) are shipped with a

PCIe slot. This slot cannot work out of the box as it has to be considered as broken by

design. Linux-Sunxi writes about this:

Allwinner H6 has a quirky PCIe controller that doesn’t map the PCIe address space

properly (only 64k accessible at one time) to CPU, and accessing the PCIe config space,

I/O space or memory space will need to be wrapped. As Linux doesn’t wrap PCIe

memory space access, it’s not possible to do a proper PCIe controller driver for H6. The

BSP kernel modifies the driver to wrap the access, so it’s also not generic, and only

devices with modified driver will work.

Icenowy is working on a wrapper to make PCIe work. Check forums.

6.7Allwinner H6

- 52/88 - 2020 by Armbian

https://docs.armbian.com/Hardware_Allwinner/
https://linux-sunxi.org/H6#Errata
https://forum.armbian.com/topic/13529-a-try-on-utilizing-h6-pcie-with-virtualization/

6.8 Cubox and Hummingboard boards

6.8.1 Legacy

System images with legacy kernel

Kernel 3.14.x with large hardware support, headers and some firmware included

Docker ready – what is Docker?

PCI-E operational (Hummingboard Pro, Gate & Edge)

mSATA / m2 operational (Hummingboard Pro & Edge)

Enabled audio devices: HDMI, spdif, analogue

Bluetooth ready (working with Cubox-i/HB PRO on-board device or external key)

I2C ready and tested with small 16×2 LCD. Basic i2c tools included.

SPI ready and tested with ILI9341 based 2.4″ TFT LCD display.

Drivers for small TFT LCD display modules.

USB redirector – for sharing USB over TCP/IP (disabled by default /etc/init.d/rc.usbsrvd)

Bugs or limitation

Gigabit ethernet transfer rate is around 50% of its theoretical max rate (internal chip bus limitation)

6.8.2 Mainline

System images with mainline kernel

Mainline with large hardware support, headers and some firmware included

Docker ready – what is Docker?

PCI-E operational (Hummingboard Pro, Gate & Edge)

mSATA / m2 operational (Hummingboard Pro & Edge)

Enabled audio devices

Bluetooth ready (working with supported external keys)

Bugs or limitation

Gigabit ethernet transfer rate is around 50% of its theoretical max rate (internal chip bus limitation)

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

6.8Cubox and Hummingboard boards

- 53/88 - 2020 by Armbian

https://github.com/linux4kix/linux-linaro-stable-mx6
https://forum.armbian.com/topic/490-docker-on-armbian/
https://www.docker.com/what-docker
https://wiki.debian.org/BluetoothUser
http://en.wikipedia.org/wiki/I%C2%B2C
https://github.com/notro/fbtft
http://www.incentivespro.com/usb-server-usage.html
http://www.kernel.org/
https://www.docker.com/what-docker

6.8.3 Desktop

Pre-installed: Firefox, LibreOffice Writer, Thunderbird

Lightweight XFCE desktop

Autologin, when normal user is created – no login manager (/etc/default/nodm)

6.8.4 Connect your LCD display

I tried two different display connection types: I2C and SPI. Both are working perfectly

with my image 2.6 or higher.

I am using 2.4″ 240×320 SPI TFT LCD Serial Port Module+5/3.3V Pbc Adapter Micro SD ILI9341

Wire according to this map.

You have to use Armbian 1.5 or newer. Currently working only under Legacy kernel.

Add this to your /etc/modules:

fbtft_device name=adafruit22a rotate=90 speed=48000000 fps=50 gpios=reset:67,led:72,dc:195 busnum=1

Reboot

Test – display some picture on the screen: fbi -d /dev/fb2 -T 1 -noverbose -a yourimage.jpg

Troubleshooting and settings for other displays LVDS

6.9 GPIO

How to control HummingBoard GPIO from kernel space?

•

•

•

•

•

•

•

•

•

•

6.8.3Desktop

- 54/88 - 2020 by Armbian

http://www.google.com/search?q=2.4%E2%80%B3+240%C3%97320+SPI+TFT+LCD+Serial+Port+Module%2B5%2F3.3V+Pbc+Adapter+Micro+SD+ILI9341&oq=2.4%E2%80%B3+240%C3%97320+SPI+TFT+LCD+Serial+Port+Module%2B5%2F3.3V+Pbc+Adapter+Micro+SD+ILI9341
http://blog.riyas.org/2014/07/quickly-test-il9341-22-inch-22-spi-tft-raspbmc-fbtft.html
https://github.com/notro/fbtft/wiki
http://www.solid-run.com/community/topic2345.html

6.10 Udoo Quad

Kernel 3.14.x and 4.4.x with some hardware support, headers and some firmware included

Docker ready – what is Docker?

Wireless adapter with DHCP ready but disabled (/etc/network/interfaces, WPA2: normal connect, bonding /

notebook or AP mode). It can handle between 40-70Mbit/s.

SATA operational

Enabled analogue (VT1613) and HDMI audio device

6.11 Bugs

SATA & USB install not working on legacy kernel

6.12 Udoo Neo

Kernel 3.14.x with some hardware support, headers and some firmware included

Wireless adapter with DHCP ready but disabled

•

•

•

•

•

•

•

6.10Udoo Quad

- 55/88 - 2020 by Armbian

https://github.com/UDOOboard/linux_kernel
https://github.com/patrykk/linux-udoo
https://forum.armbian.com/topic/490-docker-on-armbian/
https://www.docker.com/what-docker
https://github.com/UDOOboard/linux_kernel

6.13 Helios4

6.13.1 Overview

All builds provide 100% hardware support for Helios4.

6.13.2 Build Version Status

Default

U-Boot : 2018.11

Linux Kernel : Mainline 4.14.y

OS : Debian 9 Stretch

Next

U-Boot : Mainline 2019.04

Linux Kernel : Mainline 4.19.y

OS : Debian 10 Buster or Ubuntu Bionic

Known Limitations

SDcard High Speed timing have compatibility issue with some brands.

•

•

•

•

•

•

•

6.13Helios4

- 56/88 - 2020 by Armbian

7. Developer Guide

7.1 What do I need?

x86/x64 machine running any OS; at least 4G RAM, SSD, quad core (recommended),

VirtualBox or similar virtualization software (highly recommended with a minimum of 25GB hard disk

space for the virtual disk image),

Setting up VirtualBox and compile environment is easy following our Vagrant tutorial,

Docker environment is also supported for building kernels and full OS images,

The officially supported compilation environment is Ubuntu Focal 20.04 x64 only! (Support for Ubuntu 18.04

will be there until either we run into issues we do not want to waste time on or upstream support ends),

installed basic system, OpenSSH and Samba (optional),

no spaces in full path to the build script location allowed,

superuser rights (configured sudo or root shell).

Please note that system requirements (both hardware and OS/software) may differ

depending on the build environment (Vagrant, Docker, Virtualbox, native).

7.2 How to start?

Native and Virtualbox environments:

Login as root and run:

apt-get -y -qq install git git clone --depth 1 https://github.com/armbian/build cd build

Run the script

./compile.sh

Make sure that full path to the build script does not contain spaces.

•

•

•

•

•

•

•

•

7.Developer Guide

- 57/88 - 2020 by Armbian

https://www.virtualbox.org/wiki/Downloads
https://docs.armbian.com/Developer-Guide_Using-Vagrant/
../Developer-Guide_Building-with-Docker/
http://archive.ubuntu.com/ubuntu/dists/focal/main/installer-amd64/current/legacy-images/netboot/mini.iso

Providing build configuration

After the first run of compile.sh a new configuration file config-example.conf and symlink

config-default.conf will be created. You may edit it to your needs or create different

configuration files using it as a template.

Alternatively you can supply options as command line parameters to compile.sh.

Example:

./compile.sh BOARD=cubietruck BRANCH=current KERNEL_ONLY=yes RELEASE=bionic

Note: Option BUILD_ALL cannot be set to “yes” via command line parameter.

7.2.1 Base and descendant configuration

You can create one base configuration (config-base.conf) and use this in descendant

config (config-dev.conf). Three parameters (BRANCH, RELEASE,

COMPRESS_OUTPUTIMAGE) will be overwritten.

. ./config-base.conf BRANCH="dev" RELEASE="buster" COMPRESS_OUTPUTIMAGE="sha,gz"

7.2.1Base and descendant configuration

- 58/88 - 2020 by Armbian

Using our automated build system

If you do not own the proper equipment to build images on your own, you can make use

of the automated build system. Packages are recompiled every night (starting at 00:01

CEST) and a few testing images are produced. These images are accessible on the

download server under board folder, subfolder “Nightly”. Packages, when successfully

built, are published in the beta repository. You can switch to beta repository in armbian-

config or by changing apt.armbian.com to beta.armbian.com in /etc/apt/sources.list.d/

armbian.list.

Board beta images are defined in board configuration files which are located here. This

is a typical board configuration:

A20 dual core 1Gb SoC BOARD_NAME="Banana Pi" LINUXFAMILY="sun7i" BOOTCONFIG="Bananapi_defconfig" MODULES="hci_uart gpio_sunxi rfcomm hidp sunxi-ir bonding spi_sun

You can find more information about those variables here.

If you want that our automated system start making images for this particular board,

you need to alter parameters CLI_BETA_TARGET and DESKTOP_BETA_TARGET . Variants are

depenendend from KERNEL_TARGET definitions and supported userlands: buster , bionic ,

stretch . To edit those parameters you need to push changes to the build script. You

need to fork a project and create a pull request and after it is imported by one of the

administrators, images will start to show up in appropriate folder.

If you want to enable Debian buster desktop image with current kernel choose the

following:

DESKTOP_BETA_TARGET="buster:current"

or for command line interfaces Ubuntu Bionic based images with legacy kernel 4.19.x

CLI_BETA_TARGET="bionic:legacy"

or for image with latest upstream development kernel.

DESKTOP_BETA_TARGET="buster:dev"

Using alternate armbian builder repos and branches

By default, armbian-builder assumes working from master of

https://github.com/armbian/build.git . If you are working from your own repo / branch,

touch .ignore_changes will cause armbian-builder to not attempt a repo checkout.

7.2.1Base and descendant configuration

- 59/88 - 2020 by Armbian

https://dl.armbian.com/
../User-Guide_Armbian-Config/
../User-Guide_Armbian-Config/
https://github.com/armbian/build/tree/master/config/boards
https://github.com/armbian/build/blob/master/config/boards/README.md
../Process_Contribute/

Executing any bash statement

Currently, invoking compile.sh will run a monotonous task of building all the

components into a final image.

In some situation, especially when developing with Kernel or U-Boot, it is handy to run

a portion of that great task like:

using default profile ./compile.sh 'fetch_from_repo "$BOOTSOURCE" "$BOOTDIR" "$BOOTBRANCH" "yes"' ./compile.sh 'compile_uboot'

You can also dump the variable:

using profile of `userpatches/config-my.conf` ./compile.sh my 'echo $SRC/cache/sources/$BOOTSOURCEDIR'

NOTE: please use single quotes to keep the $VAR from early expansion in the command

line shell.

7.2.1Base and descendant configuration

- 60/88 - 2020 by Armbian

7.3 Quick Start with Vagrant

7.3.1 Vagrant HOST Steps

The following steps are performed on the host that runs Vagrant.

Installing Vagrant and Downloading Armbian

Virtualbox Version

WARNING: We’ll be using Virtualbox as a virtualization provider for Vagrant.

Virtualbox has documented issues running Xenial under heavy disk IO. Please make

sure your version of Virtualbox is >= 5.1.12 where the issue, “Storage: fixed a problem

with the LsiLogic SCSI controller where requests could be lost with SMP guests”,

appears to have been resolved.

First, you’ll need to install Vagrant on your host box. Next, you’ll need to install a plug-

in that will enable us to resize the primary storage device. Without it, the default

Vagrant images are too small to build Armbian.

vagrant plugin install vagrant-disksize

Now we’ll need to install git and clone the Armbian repo. While this might seem

obvious, we rely on it being there when we use Vagrant to bring up our guest-build box.

Clone the project. git clone --depth 1 https://github.com/armbian/build # Make the Vagrant box available. This might take a while but only needs to be done once.

Armbian Directory Structure

Before we bring up the box, take note of the directory structure used by the Armbian

build tool. When you read the Vagrantfile (which is in the build/config/templates

directory) you’ll see that Vagrant will mount local output and userpatches directories.

This is helpful as it enables you to easily retrieve your images from the host once built,

and customize the build process.

Creating the Vagrant Guest Box Used to Build

Let’s bring the box up. This might take a minute or two depending on your bandwidth

and hardware.

We have to be in the same directory as the Vagrant file, which is in the build/config/templates directory. cd build/config/templates # Note that you can edit the

7.3Quick Start with Vagrant

- 61/88 - 2020 by Armbian

https://www.vagrantup.com/docs/virtualbox/
https://bugs.launchpad.net/cloud-images/+bug/1616794
https://www.virtualbox.org/wiki/Changelog
https://www.virtualbox.org/wiki/Changelog
https://www.vagrantup.com/downloads.html
https://git-scm.com/downloads
https://docs.armbian.com/Developer-Guide_Build-Process/#directory-structure
https://docs.armbian.com/Developer-Guide_User-Configurations/

7.3.2 Important note

It is strongly recommended to halt and restart the Vagrant box after building an image.

Check this issue for details.

7.3.3 Vagrant GUEST Steps

The following steps are all run on the guest Vagrant created for us.

Once it’s finally up and you’re logged in, it works much like any of the other install

methods (NOTE: again, these commands are run on the guest box).

Let's get building! cd armbian sudo ./compile.sh

7.3.4 More Vagrant HOST Steps

Wrap up your vagrant box when no longer needed (log out of the guest before running

these commands on the host system):

Shutdown, but leave the box around for more building at a later time: vagrant halt # Trash the box and remove all the related storage devices. vagrant destroy

7.3.2Important note

- 62/88 - 2020 by Armbian

https://github.com/armbian/build/issues/751

7.4 Officially supported and tested method for building with Docker

This method works for building u-boot and kernel packages as well as building full OS

images.

Building additional packages (EXTERNAL_NEW) is not supported.

7.4.1 Requirements

x86/x64 Linux host that supports running a recent Docker daemon. Refer to Docker documentation for details.

Docker version 17.06 CE or newer. Installation on Ubuntu Bionic:

apt-key adv --keyserver pool.sks-keyservers.net --recv-keys 0EBFCD88 echo "deb [arch=amd64] https://download.docker.com/linux/ubuntu bionic stable" > /etc/apt/

Enough free disk space on the storage used for Docker containers and named

volumes. Named volumes path can be changed using standard Docker utilites, refer

to Docker documentation for details.

7.4.2 Details

There are 2 options to start build process:

By passing configuration file name (config-<conf_name>.conf), stored in userpatches

directory, as an argument:

./compile.sh docker <conf_name>

By passing addtional line arguments to compile.sh after docker :

./compile.sh docker KERNEL_ONLY=yes BOARD=cubietruck BRANCH=current KERNEL_CONFIGURE=yes

The process creates and runs a named Docker container armbian with 2 named volumes

armbian-cache and armbian-ccache , and mount local directories output and userpatches .

7.5 Creating and running Docker container manually

NOTE: These methods are not supported by Armbian developers. Use them at your own

risk.

•

•

•

1.

2.

7.4Officially supported and tested method for building with Docker

- 63/88 - 2020 by Armbian

https://docs.docker.com/

Example: Building Armbian using Red Hat or CentOS

Tested by @rfrht

First of all, it is important to notice that you will be able to build kernel and u-boot

packages. The container method is not suitable for building full Armbian images (the

full SD card image containing the userland packages).

This setup procedure was validated to work with Red Hat Enterprise Linux 7.

Preparing your build host

In order to be able to run Docker containers, if you have not done so, just install the

Docker package:

yum install -y docker

By default, the docker service is not started upon system reboot. If you wish to do so:

systemctl enable docker

Ensure that you have the docker service running:

systemctl start docker`

Next step, chdir to a directory where you will be checking out the Armbian build

repository. I use /usr/src . And then, check out using git (with shallow tree, using

--depth 1 , in order to speed up the process):

cd /usr/src # git clone --depth 1 https://github.com/armbian/build

And in order to not mistake the newly created build directory, I rename it to

build-armbian . cd to the directory:

mv build build-armbian # cd build-armbian

Preparing the Container

Our Build toolchain provides a scripted way to create a container and run the container.

Run:

./compile.sh docker

Give it some minutes, as it downloads a non-neglectible amount of data.

7.5Creating and running Docker container manually

- 64/88 - 2020 by Armbian

https://github.com/rfrht

After your image is created (named armbian), it will automatically spawn the Armbian

build container.

NOTICE: In some cases, it is possible that SELinux might block your access to

/root/armbian/cache temporary build directory. You can fix it by either adding the correct

SELinux context to your host cache directory, or, disabling SELinux.

Get acquainted with the Build system.

If you want to get a shell in the container, skipping the compile script, you can also run:

docker run -dit --entrypoint=/bin/bash -v /mnt:/root/armbian/cache armbian_dev

The above command will start the container with a shell. To get the shell session:

docker attach <UUID of your container, returned in the above command>

If you want to run SSH in your container, log in and install the ssh package:

apt-get install -y ssh

Now, define a password and prepare the settings so you sshd can run and you can log

in as root:

passwd # sed -i -e 's/PermitRootLogin.*/PermitRootLogin yes/' /etc/ssh/sshd_config # mkdir /var/run/sshd # chmod 0755 /var/run/sshd

And finally start sshd :

/usr/sbin/sshd

Do NOT type exit - that will stop your container. To leave your container running after

starting sshd , just type <Ctrl-P> and <Ctrl-Q> . Now you can ssh to your container.

7.5Creating and running Docker container manually

- 65/88 - 2020 by Armbian

KERNEL_ONLY (yes|no):

leave empty to display selection dialog each time

set to “yes” to compile only kernel, u-boot and other packages for installing on existing Armbian system

set to “no” to build complete OS image for writing to SD card

KERNEL_CONFIGURE (yes|no):

leave empty to display selection dialog each time

set to “yes” to configure kernel (add or remove modules or features). Kernel configuration menu will be

brought up before compilation

set to “no” to compile kernel without changing default or custom provided configuration

CLEAN_LEVEL (comma-separated list): defines what should be cleaned. Default value is "make,debs" - clean

sources and remove all packages. Changing this option can be useful when rebuilding images or building more

than one image

“make” = execute make clean for selected kernel and u-boot sources,

“images” = delete output/images (complete OS images),

“debs” = delete packages in output/debs for current branch and device family,

“alldebs” = delete all packages in output/debs ,

“cache” = delete cache/rootfs (rootfs cache),

“oldcache” = remove old cache/rootfs except for the newest 8 files,

“sources” = delete cache/sources (all downloaded sources),

“extras” = delete additional packages for current release in output/debs/extra

REPOSITORY_INSTALL (comma-separated list): list of core packages which will be installed from repository

“u-boot”, “kernel”, “bsp”, “armbian-config”, “armbian-firmware”

”” = packages will be built from sources or use the one from local cache

KERNEL_KEEP_CONFIG (yes|no):

set to “yes” to use kernel config file from previous compilation for the same branch, device family and

version

set to “no” to use default or user-provided config file

BUILD_MINIMAL (yes|no):

set to “yes” to build bare CLI image suitable for application deployment. This option is not compatible with

BUILD_DESKTOP=”yes” and BUILD_EXTERNAL=”yes”

BUILD_DESKTOP (yes|no):

set to “yes” to build image with minimal desktop environment

set to “no” to build image with console interface only

EXTERNAL (yes|no):

set to “yes” to compile and install extra applications and firmware

BSPFREEZE (no|yes): freeze (from update) armbian packages when building images (u-boot, kernel, dtb)

INSTALL_HEADERS (no|yes): install kernel headers package

•

◦

◦

◦

•

◦

◦

◦

•

◦

◦

◦

◦

◦

◦

◦

◦

•

◦

◦

•

◦

◦

•

◦

•

◦

◦

•

◦

•

•

7.5Creating and running Docker container manually

- 66/88 - 2020 by Armbian

EXTERNAL_NEW (no|prebuilt|compile):

set to “prebuilt” to install extra applications from repository

set to “compile” to compile extra applications in chroot

CREATE_PATCHES (yes|no):

set to “yes” will prompt you right before the compilation starts to make changes to the source code.

Separate for u-boot and kernel. It will also create a patch out of this. If you want that this patch is included

in the normal run, you need to copy it to appropriate directory

set to “no” compilation will run uninterrupted

BUILD_ALL (yes|no|demo): cycle through all available board and kernel configurations and make images for

all combinations

LIB_TAG (master|“branchname”):

set to “master” to compile from the master branch (default)

set to “branchname” to compile from any other branch available (“next” & “second” are deprecated and

not recommended to use).

CARD_DEVICE (/dev/sdx) set to the device of your SD card. The image will be burned and verified using

Etcher for CLI.

CRYPTROOT_ENABLE (yes|no): set to enable LUKS encrypted rootfs. You must also provide unlock password

CRYPTROOT_PASSPHRASE=”MYSECRECTPASS” and optional CRYPTROOT_SSH_UNLOCK=yes

CRYPTROOT_SSH_UNLOCK_PORT=2222 CRYPTROOT_PARAMETERS=”custom cryptsetup options” Function

might not work well with all distributions. Debian Buster and Stretch were tested. For building under the

Docker you have to use privilege mode which can be enable in userpatches/config-docker. Warning: This

feature was added as community contribution and mostly functional. Under some circumstances though the

prompt will not be shown. Therefore it should be considered experimental.

More info:

[1] https://github.com/armbian/build/commit/

681e58b6689acda6a957e325f12e7b748faa8330

[2] https://github.com/armbian/build/issues/1183

Hidden options to minimize user input for build automation:

BOARD (string): you can set name of board manually to skip dialog prompt

BRANCH (legacy|current|dev): you can set kernel and u-boot branch manually to skip dialog prompt; some

options may not be available for all devices

RELEASE (stretch|buster|bionic|focal): you can set OS release manually to skip dialog prompt; use this option

with KERNEL_ONLY=yes to create board support package

•

◦

◦

•

◦

◦

•

•

◦

◦

•

•

•

•

•

7.5Creating and running Docker container manually

- 67/88 - 2020 by Armbian

Hidden options for advanced users (default values are marked bold):

7.5Creating and running Docker container manually

- 68/88 - 2020 by Armbian

EXPERT (yes|no): Show development features in interactive mode

USERPATCHES_PATH (userpatches/): set alternate path for location of userpatches folder

USE_CCACHE (yes|no): use a C compiler cache to speed up the build process

PRIVATE_CCACHE (yes|no) use $DEST/ccache as ccache home directory

PROGRESS_DISPLAY (none|plain|dialog): way to display output of verbose processes - compilation,

packaging, debootstrap

PROGRESS_LOG_TO_FILE (yes|no): duplicate output, affected by previous option, to log files

output/debug/*.log

USE_MAINLINE_GOOGLE_MIRROR (yes|no): use googlesource.com mirror for downloading mainline kernel

sources, may be faster than git.kernel.org depending on your location

USE_GITHUB_UBOOT_MIRROR (yes|no): use unofficial Github mirror for downloading mainline u-boot

sources, may be faster than git.denx.de depending on your location

OFFLINE_WORK (yes|no): skip downloading and updating sources as well as time and host check. Set to

“yes” and you can collect packages without accessing the internet.

FORCE_USE_RAMDISK (yes|no): overrides autodetect for using tmpfs in new debootstrap and image creation

process

FIXED_IMAGE_SIZE (integer): create image file of this size (in megabytes) instead of minimal

COMPRESS_OUTPUTIMAGE (comma-separated list): create compressed archive with image file and GPG

signature for redistribution

sha - generate SHA256 hash for image,

gpg - sign image using gpg,

7z - compress image, hash and signature to 7z archive,

gz - compress image only using gz format,

yes - compatibility shorcut for sha,gpg,7z.

SEVENZIP (yes|no): create .7z archive with extreme compression ratio instead of .zip

BUILD_KSRC (yes|no): create kernel source packages

ROOTFS_TYPE (ext4|f2fs|btrfs|nfs|fel): create image with different root filesystems instead of default ext4.

Requires setting FIXED_IMAGE_SIZE to something smaller than the size of your SD card for F2FS

BTRFS_COMPRESSION (lzo|zlib:3|zstd) select btrfs filesystem compression method and compression level.

By default the compression is lzo , user must ensure kernel version is above 4.14 when selecting zstd or

setting zlib compression level(zlib:[1-9]). Both the host and the target kernel version must above 5.1 when

selecting zstd compression level (zstd:[1-15]), since kernel start supporting zstd compression ratio from 5.1 .

The script does not check the legality of input variable(compression ratio), input like zlib:1234 is legal to script,

but illegal to kernel. When using microsd card, zstd is preferred because of the poor 4k I/O performance of

microsd card.

FORCE_BOOTSCRIPT_UPDATE (yes|no): set to “yes” to force bootscript to get updated during bsp package

upgrade

•

•

•

•

•

•

•

•

•

•

•

•

◦

◦

◦

◦

◦

•

•

•

•

•

7.5Creating and running Docker container manually

- 69/88 - 2020 by Armbian

NAMESERVER (ipv4 address): the DNS resolver used inside the build chroot. Does not affect the final image.

Default: 1.0.0.1

DOWNLOAD_MIRROR select download mirror for toolchain and debian/ubuntu packages .

set to china to use mirrors.tuna.tsinghua.edu.cn , it will be very fast thanks to tsinghua university.

leave it empty to use official source.

MAINLINE_MIRROR select mainline mirror of linux-stable.git

set to google to use mirror provided by Google, the same as USE_MAINLINE_GOOGLE_MIRROR=yes .

set to tuna to use mirror provided by tsinghua university.

leave it empty to use offical git.kernel.org , it may be very slow for mainland china users.

USE_TORRENT (yes|no): use torrent to download toolchains and rootfs

ROOT_FS_CREATE_ONLY set to FORCE to skip rootfs download and create locally

•

•

◦

◦

•

◦

◦

◦

•

•

7.5Creating and running Docker container manually

- 70/88 - 2020 by Armbian

7.5.1 User provided patches

You can add your own patches outside build script. Place your patches inside

appropriate directory, for kernel or u-boot. There are no limitations except all patches

must have file name extension .patch . User patches directory structure mirrors

directory structure of patch . Look for the hint at the beginning of patching process to

select proper directory for patches. Example:

[o.k.] Started patching process for [kernel sunxi-dev 4.4.0-rc6] [o.k.] Looking for user patches in [userpatches/kernel/sunxi-dev]

Patch with same file name in userpatches directory tree substitutes one in patch . To

replace a patch provided by Armbian maintainers, copy it from patch to corresponding

directory in userpatches and edit it to your needs. To disable a patch, create empty file in

corresponding directory in userpatches .

7.5.2 User provided configuration

If file userpatches/lib.config exists, it will be called and can override the particular kernel

and u-boot versions. It can also add additional packages to be installed, by adding to

PACKAGE_LIST_ADDITIONAL . For a comprehensive list of available variables, look through

lib/configuration.sh . Some examples of what you can change:

PACKAGE_LIST_ADDITIONAL="$PACKAGE_LIST_ADDITIONAL python-serial python" # additional packages [[$LINUXFAMILY == sunxi64 && $BRANCH == dev]] && BOOTBRANCH='tag:v20

7.5.3 User provided kernel config

If file userpatches/linux-$KERNELFAMILY-$KERNELBRANCH.config exists, it will be used instead of

default one from config . Look for the hint at the beginning of kernel compilation

process to select proper config file name. Example:

[o.k.] Compiling dev kernel [@host] [o.k.] Using kernel config file [config/linux-sunxi-dev.config]

7.5.4 User provided sources config overrides

If file userpatches/sources/$LINUXFAMILY.conf exists, it will be used in addition to the default

one from config/sources . Look for the hint at the beginning of compilation process to

select proper config file name. Please note that there are some exceptions for

LINUXFAMILY like sunxi (32-bit mainline sunxi) and sunxi64 (64-bit mainline sunxi)

Example:

[o.k.] Adding user provided sunxi64 overrides

7.5.1User provided patches

- 71/88 - 2020 by Armbian

7.5.5 User provided image customization script

You can run additional commands to customize created image. Edit file:

userpatches/customize-image.sh

and place your code here. You may test values of variables noted in the file to use

different commands for different configurations. Those commands will be executed in a

chroot environment just before closing image.

To add files to image easily, put them in userpatches/overlay and access them in

/tmp/overlay from customize-image.sh

7.5.6 Partitioning of the SD card

In case you define $FIXED_IMAGE_SIZE at build time the partition containing the rootfs will

be made of this size. Default behaviour when this is not defined is to shrink the

partition to minimum size at build time and expand it to the card’s maximum capacity

at boot time (leaving an unpartitioned spare area of ~5% when the size is 4GB or less

to help the SD card’s controller with wear leveling and garbage collection on old/slow

cards).

You can prevent the partition expansion from within customize-image.sh by a

touch /root/.no_rootfs_resize or configure the resize operation by either a percentage or a

sector count using /root/.rootfs_resize (50% will use only half of the card’s size if the

image size doesn’t exceed this or 3887103s for example will use sector 3887103 as

partition end. Values without either % or s will be ignored)

7.5.5User provided image customization script

- 72/88 - 2020 by Armbian

7.6 FEL/NFS boot explanation

What is FEL/NFS boot?

FEL/NFS boot mode is a possibility to test freshly created Armbian distribution without

using SD card. It is implemented by loading u-boot, kernel, initrd, boot script and

.bin/.dtb file via USB FEL mode and providing root filesystem via NFS share.

NOTE: this mode is designed only for testing. To use root on NFS permanently, use

ROOTFS_TYPE=nfs option. NOTE: “hot” switching between kernel branches (default <->

dev/next) is not supported

Requirements

Allwinner device that supports FEL mode. Check wiki to find out how to enter FEL mode with your device

USB connection between build host and board OTG port (VM USB passthrough or USB over IP may work too)

Network connection between build host and board. For target board wired Ethernet connection is required

(either via onboard Ethernet or via USB ethernet adapter that has required kernel modules built-in)

NFS ports on build host should be reachable from board perspective (you may need to open ports in firewall or

change network configuration of your VM)

Selected kernel should have built-in support for DHCP and NFS root filesystem

CLEAN_LEVEL="make,debs" to always update u-boot configuration

Additional requirements (recommended)

DHCP server in local network

UART console connected to target board

Build script options

KERNEL_ONLY=no

ROOTFS_TYPE=fel

Example:

./compile.sh KERNEL_ONLY=no BOARD=cubietruck BRANCH=current PROGRESS_DISPLAY=plain RELEASE=jessie BUILD_DESKTOP=no ROOTFS_TYPE=fel

Shutdown and reboot

Once you start FEL boot, you will see this prompt:

•

•

•

•

•

•

•

•

•

•

7.6FEL/NFS boot explanation

- 73/88 - 2020 by Armbian

https://linux-sunxi.org/FEL/USBBoot
https://linux-sunxi.org/FEL

[o.k.] Press any key to boot again, <q> to finish [FEL]

Pressing q deletes current rootfs and finishes build process, so you need to shut down

or reboot your board to avoid possible problems unmounting/deleting temporary rootfs.

All changes to root filesystem will persist until you exit FEL mode.

To reboot again into testing system, switch your board into FEL mode and press any

key other than q .

Because kernel and .bin/.dtb file are loaded from rootfs each time, it’s possible to

update kernel or its configuration (via apt-get , dtc , fex2bin / bin2fex) from within

running system.

Advanced configuration

If you don’t have DHCP server in your local network or if you need to alter kernel

command line, use lib/scripts/fel-boot.cmd.template as a template and save modified script

as userpatches/fel-boot.cmd . Check this for configuring static IP for NFS root

Set FEL_DTB_FILE to relative path to .dtb or .bin file if it can’t be obtained from u-boot

config (mainline kernel) or boot/script.bin (legacy kernel)

You may need to set these additional options (it’s a good idea to put them in

userpatches/lib.config :

Set FEL_NET_IFNAME to name of your network interface if you have more than one non-

loopback interface with assigned IPv4 address on your build host

Set FEL_LOCAL_IP to IP address that can be used to reach NFS server on your build host if

it can’t be obtained from ifconfig (i.e. port forwarding to VM guest)

Set FEL_AUTO=yes to skip prompt before trying FEL load

Customization

You can even create userpatches/fel-hooks.sh and define there 2 functions: fel_post_prepare

and fel_pre_load . All normal build variables like $BOARD, $BRANCH and so on can be

used in these functions to define specific actions.

7.6FEL/NFS boot explanation

- 74/88 - 2020 by Armbian

https://git.kernel.org/cgit/linux/kernel/git/stable/linux-stable.git/plain/Documentation/filesystems/nfs/nfsroot.txt

fel_post_prepare is executed once after setting up u-boot script and NFS share, you can

use it to add extra stuff to boot.scr (like gpio set or setenv machid) based on device name.

fel_pre_load is executed before calling sunxi-fel, you can use it to implement logic to

select one of multiple connected boards; to pass additional arguments to sunxi-fel you

can use FEL_EXTRA_ARGS variable.

An example is provided as scripts/fel-hooks.sh.example .

7.6FEL/NFS boot explanation

- 75/88 - 2020 by Armbian

8. Contributor Process

8.1 Collaborate on the project

8.1.1 How?

Fork the project

Make one or more well commented and clean commits to the repository.

Perform a pull request in github’s web interface.

If it is a new feature request, don’t start the coding first. Remember to open an issue to

discuss the new feature.

If you are struggling, check WEB or CLI step by step guide on contributing.

8.1.2 Where are sources?

Build script:

https://github.com/armbian/build

Documentation:

https://github.com/armbian/documentation

Armbian-config tool:

https://github.com/armbian/config

8.2 Help with donations

If you find our project useful, then we’d really appreciate it if you’d consider

contributing to the project however you can. Donating is the easiest way to help us –

you can use PayPal and Bitcoin or you can buy us something from our Amazon.de wish

list.

http://www.armbian.com/donate/

Thanks!

1.

2.

3.

8.Contributor Process

- 76/88 - 2020 by Armbian

https://help.github.com/articles/fork-a-repo/
https://help.github.com/articles/creating-a-pull-request/
https://guides.github.com/features/issues/
https://www.exchangecore.com/blog/contributing-concrete5-github/
https://www.digitalocean.com/community/tutorials/how-to-create-a-pull-request-on-github
https://github.com/armbian/build
https://github.com/armbian/documentation
https://github.com/armbian/config
http://www.armbian.com/donate/

8.3 Merge Policy

8.3.1 Overview

Note: This document is a Work In Progress and is subject to change. Definitions may be

relocated to a seperate document in the future.

This policy is targeted for Maintainers for Lead Maintainers who have commit access to

master branch. This document describes the tags needed for different mege types. See

Definitions.

The types of code maintained fall into the following categories:

Kernel

U-Boot

Build Scripts

Kernel and U-Boot maintainers are usually grouped by SoC Architecture.

Supported boards will have the most scrunity with code review.

8.3.2 U-Boot Patches

Standard Contributors provide tested-by submitter (armbianmonitor -u with a fresh build)

SoC maintainer maybe submit a PR with only a reviewed by of the lead SoC maintainer

8.3.3 Kernel Related Patches

default and next branches

DT changes reviewed by at least one person familiar with this SoC (lead maintainer or deputy), tested-by the

contributor who sends it (armbianmonitor)..

trivial module activation doesn’t matter

dev branches

Constraints are at the discretion of the SoC mantainer. This builds are not expected to

be stable.

•

•

•

•

•

•

•

8.3Merge Policy

- 77/88 - 2020 by Armbian

8.3.4 Armbian Build Scripts

This pertains to code used to build system images, OS configuration, and supporting

packages. (Basically Anything not U-Boot or Kernel source)

lib scripts

Requires at least one Reviewed-by

configuration

board promotion

Boards have different levels of commitment / support. EOL, CSC, WIP, Supported. To

promote a board from WIP to Supported an Acked-by from a Lead Maintainer is

required.

kernel config

Changes in default & next kernel config should provide at least tested-by with armbianmonitor -u

Changes in dev are at the discretion of maintainer. No constraints

kernel sources

Change kernel source repos, branches, versions can be very disruptive to stable builds.

Sufficient communication should occur stable changes.

u-boot and kernel version bump for default and next requires tested-by from Maintainers and/or testers on at

least two different boards for the impacted platform.

kernelsources switch (next default) needs a discussion on forum or github documented in PR and Acked-by

Lead Maintainer. These changes are risky and things can go terrible wrong here…

dev source changes are at the discretion of the Lead Maintainer

Boardfamily tweaks require at least reviewed-by

packages

minimum require Acked-by

•

•

•

•

•

•

•

•

8.3.4Armbian Build Scripts

- 78/88 - 2020 by Armbian

8.3.5 Definitions

Code Review Terms

click here for attribution to terms used below

Signed-off-by

Certifies that you wrote it or otherwise have the right to pass it on as a open-source

patch.

Acked-by

If a person was not directly involved in the preparation or handling of a patch but

wishes to signify and record their approval of it then they can arrange to have an

Acked-by: line. Acked-by: does not necessarily indicate acknowledgement of the entire

patch.

Tested-by

A Tested-by: tag indicates that the patch has been successfully tested (in some

environment) by the person named. This tag informs maintainers that some testing has

been performed, provides a means to locate testers for future patches, and ensures

credit for the testers.

Reviewed-by

A Reviewed-by tag is a statement of opinion that the patch is an appropriate

modification of the kernel without any remaining serious technical issues. Any

interested reviewer (who has done the work) can offer a Reviewed-by tag for a patch.

Other

Maintainer

An Individual designated to moderate, support and make decisions for a codebase or

component. There can be multiple maintainers assigned to any given thing.

8.3.5Definitions

- 79/88 - 2020 by Armbian

https://lists.x.org/archives/xorg-devel/2009-October/003036.html

Lead Maintainer

A more experienced maintainer that will decide on high-impact and stategic changes

and have final say in disputes. A lead maintainer may share or designiate responsibility

to some or all components within their domain of responsibility.

SoC

System on-a-Chip.

8.3.5Definitions

- 80/88 - 2020 by Armbian

8.4 Armbian documentation hosted on Github pages

Pull request: auto rebuild and push to https://github.com/EvilOlaf/docupreview and

publish at https://evilolaf.github.io/docupreview/ for reviewing.

PUSH: auto rebuild and push to https://github.com/EvilOlaf/docupreview and publish at

https://github.com/EvilOlaf/docutest. This should be the official documentation then.

Web version is published here: https://evilolaf.github.io/docutest/

PDF version is published here: https://github.com/EvilOlaf/docutest/blob/master/pdf/

document.pdf

Check runner files for details.

8.4Armbian documentation hosted on Github pages

- 81/88 - 2020 by Armbian

https://github.com/EvilOlaf/docupreview
https://evilolaf.github.io/docupreview/
https://github.com/EvilOlaf/docupreview
https://github.com/EvilOlaf/docutest
https://evilolaf.github.io/docutest/
https://github.com/EvilOlaf/docutest/blob/master/pdf/document.pdf
https://github.com/EvilOlaf/docutest/blob/master/pdf/document.pdf

9. Release management

9.1 Release model

Release Dates

Armbian runs “train” based releases. Whatever is ready to board the train, does so.

Whatever isn’t ready, has to wait for the next train. This enables us to have a

predictable release cycles making it easy to plan. It also puts the responsibility on

developers to make sure they have features ready on time.

Armbian releases quarterly at the end of February, May, August, November. Offset is

because we all know that nothing happens for half of December. At the beginning of a

release cycle, we have a planning meeting and two weeks before the end of the

release we freeze integration of new features.

Release Cycle

Releases last 3 months. Each release starts with a planning meeting. After planning,

developers and development teams build their deliverable using whatever methods

(scrum, kanban, waterfall, …) they want but shall commit their code frequently, leading

up to the last 2 weeks. The project does not accept “dumps” of code at the end.

Commit early and often on master. Two weeks before the release date, we halt

feature integration and only allow bug fixes. At some point during those two weeks, we

start the release candidate process. This process starts by pulling a branch off master

that will become the release branch. That frees up master for development on the next

release. On the release candidate branch we work on bug fixes, and choose “release

candidate”, RC, tags. The software at that tag is a candidate for release, and it is

submitted to automated and manual tests on real hardware. If automated tests are

passing, we can officially tag it as the release. If it doesn’t, we enter another bug fix

cycle and create a new release candidate. We iterate until we have a candidate that can

be the formal release. Usually, this takes 2-3 cycles and 1-3 weeks of time.

Development epics, stories and bugs for each release are tracked through Jira.

9.Release management

- 82/88 - 2020 by Armbian

https://armbian.atlassian.net/

9.2 Release Branching, Versioning and Tags

Branches in Armbian follow this convention:

Master branch (master): Main development will happen on the master branch. This is the latest and greatest

branch, but is always “stable” and “deployable”. All tests always pass on this branch.

Maintenance branch (support): This is the long-term maintenance branch per release.

Development branch (dev): This is a branch created for lengthy and/or involved feature development that

could destabilize master.

Each Armbian release will have the following version format:

Format: <major>.<minor>.<revision>

<major> and <minor> version will be incremented at the end of the release cycles while

<revision> is incremented for a fix (or set of fixes)

Tags are used in ad-hoc manner.

9.3 Release Naming

version codename release month work

19.11 Vaquita November done

20.02 Chiru February done

20.05 Kagu May done

20.08 Caple August planned

20.11 Tamandua November

by http://www.codenamegenerator.com/

9.4 Release Planning

A release planning starts with an public IRC meeting where developers and interested

users come together in first Saturday, one month before the release month.

Dates for 2020:

April 4th

July 4th

October 3rd

•

•

•

•

•

•

9.2Release Branching, Versioning and Tags

- 83/88 - 2020 by Armbian

https://armbian.atlassian.net/projects/AR/versions/10000/tab/release-report-all-issues
https://armbian.atlassian.net/projects/AR/versions/10001/tab/release-report-all-issues
https://armbian.atlassian.net/projects/AR/versions/10002/tab/release-report-all-issues
https://armbian.atlassian.net/projects/AR/versions/10003/tab/release-report-all-issues
https://freenode.irclog.whitequark.org/armbian/2020-04-04

Agenda:

check meeting attendees (if nick is not self explanatory, add your forum/github handle. Just say hi or

something)

choose upcoming release officer (so far it was me and Lane)

present tasks, bugs or project you are working on (open discussion if there will not be much people, otherwise

meeting officer call people out). Jira should be open in not already.

cycle Jira backlog:

discuss task / bug (one at a time)

assign to person / release / tag

re-prioritise

cycle open issues and PR on build engine

board status update on download pages and build engine (wip, supported, eol)

change (build) branch protection rule to “Require pull request reviews before merging”

decide upon best meetings hours

misc / open discussion

Tips:

when you got a voice, be concise (1-2 min) and make it clear when you stop. (“No more, I’m done”)

channel is recorded so a summary and adjustments to Jira can made afterwards, ideally along with the meeting

Meeting location is IRC channel #armbian on freenode. Meeting starts at 2pm GMT.

9.5 Release Coordinating

9.5.1 Summary

A release starts as a RC Branch cut from master at freeze time. Once a RC Branch is

cut, master can be unfrozen and development can continue. RC Branches accept bug

fixes. The bug fixes should be cherry-picked back to master branch. Once the RC Is

stable. A Final release is made. A release is never merged to master. Once a release is

complete, it only should be updated for severe bugs and severe security vulnerabilities.

A release is only maintained until the next release.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

9.5Release Coordinating

- 84/88 - 2020 by Armbian

https://webchat.freenode.net/?channels=armbian
https://freenode.net/
https://www.thetimezoneconverter.com/?t=14:00&tz=GMT

9.5.2 1. Forum Communication

Create a new thread in the Armbian Build Framework Subforum

Ex topic name: Ambian 20.02 (Chiru) Release Thread

Tag the post with relase, release version, and codename

Use the following template to begin the body of the release thread:

Release Candidate Code Freeze Date: YYYY-MM-DD Release Date: YYYY-MM-DD Release Candidate Branch Link: URL Release Changelog: URL Release Coordinator: @yourname Tes

Before Code Freeze – Make note in the thread the incomplete jira issues tagged for the release example

After test images are procuded, engage in community for assistants wih testing.. forums, twitter, etc. share this

tool

9.5.3 2. Release Candidate Branch Management

For code freeze – create a RC branch in the format (vYY.MM-rcX) ex: v20.02-rc1

If Possible, create Jira tickets for major changes in github that were not tracked in Jira

Begin Testing Process. See Release Testing

Do not modify branch directy. Only accept PRs

Only accept PRs for Bugfixes. No features

Update master branch version to the NEXT release version with -trunk ex. If RC is v20.02.0-rc1 Master

bacomes v20.05.0-trunk

FIXME ? Coordinate with Igor or other Admins generate test build from branch ?

Repeat build, test, and bugfix process until release is stable

Cherry-pick bugfixes back into master

Create Final Release branch from RC

9.5.4 3. Release

In Github create a Release from final release branch

Copy Release notes generated by Jira Release into Github form

Add other appropriate information into release github release notes

Point Armbian build system to new release

Update armbian documentation to reflect current release

Celebrate

9.6 Release Testing

See Opportunties for improvement

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

9.5.21. Forum Communication

- 85/88 - 2020 by Armbian

http://forum.armbian.com/forum/12-armbian-build-framework/
http://forum.armbian.com/topic/12763-armbian-2002-chiru-release-thread/?do=findComment&comment=93245
http:///github.com/armbian/autotests
http:///github.com/armbian/autotests

9.7 Reflection on Prior Releases

9.7.1 Opportunities for Improvement

9.7.2 wireless driver testing

wireless is a particularly sensitive issue. We need to test, fix, or at least be able to inform others of what is

broken

Bug Tracking

Testing

Image Downloads

9.7.3 Positive Observations

Good response from community for testing assistance

Release was on time

9.8

•

•

•

9.7Reflection on Prior Releases

- 86/88 - 2020 by Armbian

20.05.6 / 19.06.2020

[AR-324] - Add Rockchip RK322X SoC support

20.05.4 / 16.06.2020

[AR-311] - Initrd on Focal can get corrupted followup fix

20.05.3 / 10.06.2020

[AR-300] - Enable HDMI audio for OrangePi 4

[AR-305] - K-worker creates load on Allwinner devices

[AR-282] - Rockpi 4B 1Gb doesn't boot modern kernel / u-boot

20.05.2 / 05.06.2020

[AR-294] - Initrd on Focal can get corrupted

•

•

•

•

•

•

9.8

- 87/88 - 2020 by Armbian

https://armbian.atlassian.net/browse/AR-324
https://armbian.atlassian.net/browse/AR-311
https://armbian.atlassian.net/browse/AR-300
https://armbian.atlassian.net/browse/AR-305
https://armbian.atlassian.net/browse/AR-282
https://armbian.atlassian.net/browse/AR-294

10. Community

gbbgweogbwobowebgowebgoewbgoewbg

10.Community

- 88/88 - 2020 by Armbian

	Armbian documentation
	Linux for ARM development boards

	Table of contents
	1.Welcome to the Armbian Documentation!
	2.What is Armbian?
	2.0.1Common features
	2.0.2Performance tweaks

	3.What is supported?
	3.0.1Supported chips
	3.0.2Supported boards

	4.Get Involved!
	5.User Guide
	5.1Prerequisites for new users
	What to download?
	Legacy or current?
	What are testing images?
	What are experimental/dev images?
	How to check download authenticity?
	How to check download integrity?
	How to prepare a SD card?
	How to boot?
	How to login?
	How to update?
	How to update u-boot?
	How to adjust hardware features?
	How to install to eMMC, NAND, SATA & USB?
	How to connect to wireless?
	How to set fixed IP?

	5.2What is Armbian Linux?
	5.3Challenges
	Armbian is the opposite of Raspbian
	Balancing Development and Support
	5.3.1More SBCs continuously coming to market

	5.4Benefits
	Simple
	Light
	Optimized
	Fast
	Secure
	Supported
	Smart
	Open

	5.5Hardware troubleshooting guide
	Powering notes
	Power supply
	Cable
	Connector

	SD card notes
	SD card brand
	SD card size and speed class
	Writing images to the SD card

	How to switch kernels?
	How to troubleshoot?
	How to unbrick the system? (outdated)
	How to build a wireless driver?
	How to freeze your filesystem? (outdated)

	How to run Docker? (outdated)

	5.6How to set wireless access point?
	5.7How to connect IR remote?
	5.8How to customize keyboard, time zone?
	5.8.1Attention:
	Keyboard:
	System language:
	Console font, codepage:
	Time zone:
	Screen resolution on other boards:
	Screen resolution within Xorg Thx @maxlinux2000
	How to alter CPU frequency?
	How to downgrade a package via apt?
	How to toggle boot output?
	How to toggle verbose boot?
	How to provide boot logs for inspection?
	How to change network configuration?

	5.9Armbian configuration utility
	5.9.1System
	5.9.2Network
	5.9.3Personal settings
	5.9.4Software
	5.9.5Sources

	5.10Device Tree overlays
	Armbian specific notes
	Quick start
	Using custom overlays
	armbianEnv.txt entries reference
	Kernel provided vs user provided overlays
	Activation
	Overlay parameters
	Overlay bus selection
	Overlay pinmux conflicts
	Overlay device endpoint conflicts
	Overlay compatibility
	Notes regarding SPI and I2S overlays
	Debugging
	Example /boot/armbianEnv.txt contents:
	Example of serial console log when using several overlays:

	5.11Migration from Bananian to Armbian
	5.11.1The challenges:
	SD cards wear out after a certain amount of data being written to
	All hardware will die eventually
	Hardware up to the task?

	5.11.2Alternatives to an in-place migration:
	Continue on same hardware but prevent SD card hassles
	Replacing the hardware

	5.11.3In-place migration tipps:

	6.Hardware Notes
	6.1Enable Hardware Features
	6.2Generic howto for Allwinner devices
	6.2.1Legacy or current kernel ?
	6.2.2How to reconfigure video output?
	6.2.3What flavour am I using ?
	6.2.4FEX (outdated/unsupported, informational only)
	Which file should I edit
	Updating a FEX

	6.3H3 based Orange Pi, legacy kernel
	6.3.1Enable serial /dev/ttyS3 on pins 8 and 10 of the 40 pin header
	6.3.2Connect your LCD display

	6.4Allwinner A10 & A20 boards
	6.4.1Overview
	6.4.2Legacy
	Please note that upstream support for kernel 3.4.x has ended in 2017 so this kernel will not receive security updates in the future.
	Bugs or limitation

	6.4.3Mainline
	Bugs or limitation

	6.4.4Desktop
	6.4.5Notes
	Setting non-standard monitor settings for A10, A20 and A31 based boards in u-boot

	6.4.6Resources

	6.5Allwinner H3 boards
	Overview
	Kernel support
	Default settings
	Tips and tricks (general)
	Tips and tricks (H3 specific / lowering consumption) (outdated)

	6.6Allwinner H5 and A64 boards
	Overview
	Warning

	6.7Allwinner H6
	CPU frequency
	PCIe (un-)supported

	6.8Cubox and Hummingboard boards
	6.8.1Legacy
	Bugs or limitation

	6.8.2Mainline
	Bugs or limitation

	6.8.3Desktop
	6.8.4Connect your LCD display

	6.9GPIO
	6.10Udoo Quad
	6.11Bugs
	6.12Udoo Neo
	6.13Helios4
	6.13.1Overview
	6.13.2Build Version Status
	Default
	Next
	Known Limitations

	7.Developer Guide
	7.1What do I need?
	7.2How to start?
	Native and Virtualbox environments:
	Providing build configuration
	7.2.1Base and descendant configuration
	Using our automated build system
	Using alternate armbian builder repos and branches
	Executing any bash statement

	7.3Quick Start with Vagrant
	7.3.1Vagrant HOST Steps
	Installing Vagrant and Downloading Armbian
	Virtualbox Version

	Armbian Directory Structure
	Creating the Vagrant Guest Box Used to Build

	7.3.2Important note
	7.3.3Vagrant GUEST Steps
	7.3.4More Vagrant HOST Steps

	7.4Officially supported and tested method for building with Docker
	7.4.1Requirements
	7.4.2Details

	7.5Creating and running Docker container manually
	Example: Building Armbian using Red Hat or CentOS
	Preparing your build host
	Preparing the Container

	Hidden options to minimize user input for build automation:
	Hidden options for advanced users (default values are marked bold):
	7.5.1User provided patches
	7.5.2User provided configuration
	7.5.3User provided kernel config
	7.5.4User provided sources config overrides
	7.5.5User provided image customization script
	7.5.6Partitioning of the SD card

	7.6FEL/NFS boot explanation
	What is FEL/NFS boot?
	Requirements
	Additional requirements (recommended)

	Build script options
	Shutdown and reboot
	Advanced configuration
	Customization

	8.Contributor Process
	8.1Collaborate on the project
	8.1.1How?
	8.1.2Where are sources?

	8.2Help with donations
	8.3Merge Policy
	8.3.1Overview
	8.3.2U-Boot Patches
	8.3.3Kernel Related Patches
	default and next branches
	dev branches

	8.3.4Armbian Build Scripts
	lib scripts
	configuration
	board promotion
	kernel config
	kernel sources
	packages

	8.3.5Definitions
	Code Review Terms
	Signed-off-by
	Acked-by
	Tested-by
	Reviewed-by

	Other
	Maintainer
	Lead Maintainer
	SoC

	8.4Armbian documentation hosted on Github pages

	9.Release management
	9.1Release model
	9.2Release Branching, Versioning and Tags
	9.3Release Naming
	9.4Release Planning
	9.5Release Coordinating
	9.5.1Summary
	9.5.21. Forum Communication
	9.5.32. Release Candidate Branch Management
	9.5.43. Release

	9.6Release Testing
	9.7Reflection on Prior Releases
	9.7.1Opportunities for Improvement
	9.7.2wireless driver testing
	Bug Tracking
	Testing
	Image Downloads

	9.7.3Positive Observations

	9.8

	10.Community

